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A RISK-BASED APPROACH TO OPTIMISATION UNDER
LIMITED INFORMATION

TANSU ALPCAN∗

Abstract. A risk-based black box optimisation approach is presented that addresses a class
of nonconvex multi-variable optimisation problems often encountered in wired and wireless network
resource allocation. Information limitations both in terms of search budget and lack of knowledge
on the objective function play a defining role in such problems. A novel algorithm is introduced
that reduces a risk-like metric in a greedy manner. This risk metric strikes a balance between the
conflicting information acquisition and function maximisation objectives. Hence, it brings a novel
perspective to the problem. Initial numerical analysis indicates that the presented algorithm is more
robust than the alternatives in [2] possibly due to its emphasis on risk reduction.

Key words. Global optimisation, information theory, Gaussian Process Regression.

AMS subject classifications. 90C26, 94A17, 60G15, 91B30.

1. Introduction.

The Problem and Motivation. This paper studies a class of black box opti-
misation problems, where the objective function is unknown to the optimiser. The
optimiser conducts a search on the given problem domain, which is assumed to be
known, in order to find the maximum of the objective function. However, the number
of points that can be evaluated is limited either due to high cost of information ac-
quisition or time limitations, which may be a result of the problems transient nature.
Furthermore, even after the search the objective function remains unknown except
from the set of data points explored.

The problem considered is encountered in practice much more frequently than
it may first seem. Examples include decentralised resource allocation in wired and
wireless networks, security-related decisions, biological systems, and management de-
cisions in large-scale organisations. Black-box methods known as “kriging” [3] have
been applied to similar problems in geology, mining, and hydrology since mid-1960s.
In wired and wireless networks, system parameters often change quickly and global
information on network characteristics are not available at the local decision-making
nodes. In many security-related decisions the opponents spend a conscious effort to
hide their actions. In large-scale organisations acquiring information on individual
subsystems and processes can be very costly, which profoundly affects management
decisions. In biological systems, individual subsystems often operate autonomously
under limited local information.

The Approach and Contribution. The simplest method (both conceptually
and computationally) to solve the problem defined is to conduct a random search on
the problem domain. As such no attempt is made to “learn” the properties of the
objective function. Unless the function is “algorithmically random” [6] this strategy
wastes the information collected. A slightly more complicated and popular set of
strategies, e.g. simulated annealing, combine random search with simple modelling of
the objective function [11] through identification of local gradients or “slopes”.

The random search approaches are not applicable when the number of search
points is limited. Therefore, this paper adopts a Bayesian learning approach [8].
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A best estimate of the objective function is derived using the observed data within
a selected model. The model choice reflects prior information on the general class
the optimisation problem belongs to and can be interpreted as the “world view” of
the optimiser. Hence, the estimated objective function is essentially a model-based
interpolation of the observations; a combination of the data and the model. Following
the Bayesian principles, each new data point is used to refine the estimation in an
iterative learning process. The same data can also be used for refining the model itself,
e.g. choosing meta parameters in a slower time-scale. However, model selection, which
is a separate problem, will not be addressed in this paper.

The learning process here is fundamentally intertwined with information acquisi-
tion. Information plays a crucial role due to limitations on the search budget. Hence,
the problem is partly one of active learning or experiment design. Within the chosen
Bayesian model each data points provides a different amount of information. Using
Shannon Information Theory, this information is quantified as the difference between
the entropy values that capture estimation uncertainty before and after observation.

The search problem can be formulated as a weighted sum of two objectives. First
is maximising the estimated objective function and the second one is acquiring in-
formation in the most efficient manner. This formulation, presented in [2], allows
to address the exploration versus exploitation trade-off explicitly. However, if the
maximum value of the objective function at the optimal point is known or can be
estimated accurately, it is possible to develop a risk-based alternative formulation.

The main contribution of this paper is the risk-based approach as a way of
combining the exploration and optimisation objectives. A standard definition of risk
is combined with an information theoretic approach to obtain a robust optimisation
formulation to address the problem. A risk-based algorithm for addressing general
(nonconvex) optimisation problems is presented along with a well-defined stopping
criterion. The algorithm is demonstrated with a numerical example.

The rest of the paper is organised as follows. The problem and the underlying
model used to address it are formulated in the next section along with a brief overview
of Gaussian process regression and an entropy-based metric for quantifying Shannon
information. Section 3 presents the risk-based algorithm developed. A numerical
example is provided in Section 4. The paper concludes with brief remarks in Section 5.

2. Problem Analysis and Model. Let X ⊂ R
d be the nonempty, compact,

and known problem domain. The original objective function to be maximised fo :
X → R, is unknown except from on a finite number of points observed. As a special
but broad case, let fo belong to the Lp space, 1 ≤ p < ∞. Then, given ǫ > 0,
there is a continuous function f such that ||fo − f || < ǫ. It immediately follows from
compactness of X that f is bounded and assumes its maximum and minimum [10].
Based on this approximation, the focus is on maximisation of the continuous real
valued function f on X .

One of the main distinguishing characteristics of this problem is the limitations
on set of observations Ωn := {x1, . . . , xn : xi ∈ X ∀i, n ≥ 1}, due to cost of
obtaining information or non-stationarity of the underlying system. In many cases
these observations may also be noisy. Accordingly, a basic search problem is defined:

Problem 1 (Search Problem). Consider a continuous objective function f : X →
R on the d-dimensional nonempty and compact set X ⊂ R

d. The function is and will
be unknown except from on a finite number of observed data points. What is the best
search strategy ΩN := {x1, . . . , xN : xi ∈ X ∀i, N ≥ 1} to find x∗ = argmaxx f(x)
such that x∗ ∈ ΩN?
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The number of observations, N ≥ 1, in Problem 1 may be imposed by the nature
of the specific application domain. In a nonstationary problem, there is opportunity
for making only a certain number of observations, N , in a given time window. Alterna-
tively, the problem may be stationary but there is an observation cost co(x) : X → R

and exploration budget C such that
∑

x∈Ωn

co(x) ≤ C.
The Problem 1 involves two distinct objectives. First one is the estimation of

the objective function. A method for this task is presented next. The second one is
information acquisition taking into account the limited exploration budget, which is
discussed in Subsection 2.2.

2.1. Gaussian Process (GP) Regression. This paper uses Gaussian Process

(GP) based regression [9] for learning the function f̂ that estimates the objective
function f on the set X using the information collected. A GP is formally defined
as a collection of random variables, any finite number of which have a joint Gaussian
distribution. It is completely specified by its mean function m(x) and covariance
function C(x, x̃), where

m(x) = E[f̂(x)] and C(x, x̃) = E[(f̂(x)−m(x))(f̂(x̃)−m(x̃))], ∀x, x̃ ∈ D.

Consider a set of M data (observation) points D = {x1, . . . , xM}, where each xi ∈ X
is a d−dimensional vector, and the corresponding vector of scalar values is f(xi), i =
1, . . . ,M . Assume that the observations are distorted by a zero-mean Gaussian noise,
n with variance σ ∼ N (0, σ). Then, the resulting observations is a vector of Gaussian
y = f(x) + n ∼ N (f(x), σ).

Let us for simplicity choose m(x) = 0. Then, the GP is characterised entirely
by its covariance function C(x, x̃). Since the noise in observation vector y is also
Gaussian, the covariance function can be defined as the sum of a kernel function
Q(x, x̃) and the diagonal noise variance

C(x, x̃) = Q(x, x̃) + σI, ∀x, x̃ ∈ D, (2.1)

where I is the identity matrix. While it is possible to choose here any (positive
definite) kernel Q(·, ·), one classical choice is

Q(x, x̃) = exp

[

−
1

2
‖x− x̃‖2

]

. (2.2)

GP makes use of the well-known kernel trick here by representing an infinite di-
mensional continuous function using a (finite) set of continuous basis functions and
associated vector of real parameters in accordance with the representer theorem [12].

The (noisy)1 training set (D, y) is used to define the corresponding GP through
the M × M covariance function C(D) = Q + σI, where the conditional Gaussian
distribution of any point outside the training set, ȳ ∈ X , ȳ /∈ D, given the training
data (D, t) can be computed as follows. Define

k(x̄) = [Q(x1, x̄), . . . Q(xM , x̄)], κ = Q(x̄, x̄) + σ. (2.3)

Then, the conditional distribution p(ȳ|y) that characterises the GP(0, C) is a Gaussian

N (f̂ , v) with mean f̂ and variance v,

f̂(x̄) = kTC−1y and v(x̄) = κ− kTC−1k. (2.4)

1The special case of perfect observation without noise is handled the same way as long as the
kernel function Q(·, ·) is positive definite
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This is a key result that defines GP regression as the mean function f̂(x) of
the Gaussian distribution and provides a prediction of the objective function f(x).
Furthermore, the variance function v(x) can be used to measure the uncertainty level

of the predictions provided by f̂ , as it will be discussed in the next subsection.

2.2. Quantifying Information. An important aspect of Problem 1 is to max-
imise the amount of information obtained with each new observation x̃. Shannon
information theory readily provides the necessary mathematical framework for mea-
suring the information content of a variable. Let p be a probability distribution over
the set of possible values of a discrete random variable A. The entropy of the ran-
dom variable is given by H(A) =

∑

i pi log2(1/pi), which quantifies the amount of
uncertainty. Then, the information obtained from an observation on the variable, i.e.
reduction in uncertainty, can be quantified simply by taking the difference of its initial
and final entropy, I = H0 −H1.

It is important here to avoid the common conceptual pitfall of equating entropy
to information itself as it is sometimes done in communication theory literature.2

Within this framework, (Shannon) information is defined as a measure of the decrease
of uncertainty after (each) observation (within a given model).

Define Θ as a discrete search domain obtained by sampling X [2, 14]. The problem
of choosing the optimal new data point x̂ ∈ Θ such that the information obtained
from it within the GP regression model is maximised can be formulated as

x̂ = argmax
x̃

I = argmax
x̃

[H0 −H1(x̃)] . (2.5)

While the uncertainty (entropy) before observation, H0 is fixed, the uncertainty after
the observation is a function of the observation x̃.

The entropy of a multivariate Gaussian distribution is H(x) = 0.5d(ln(2π)+ 1)+
0.5 ln |CD(x)|, where d is the dimension, and CD is the covariance matrix based on
the data set D. The aggregate entropy of the estimated function is given by

Hagg :=
1

2

∑

x∈Θ

ln |CD(x)|+
d

2
ln(2πe). (2.6)

Thus, the information obtained by the new observation x̃ is

I =
1

2

∑

x∈Θ

ln

(

|CD(x)|

|CD∪x̃(x)|

)

(2.7)

Although the optimisation problem in (2.5) is not analytically tractable (see e.g.
[5] for an interesting discussion), if x̃ is chosen such that the variance is maximised,
then this leads to a large (possibly largest) reduction in the denominator of (2.7), and
hence provides a rough approximate solution. This result corresponds to the widely-
known heuristics such as “maximum entropy” or “minimum variance” methods [13]
and a variant has been discussed in [7]. It is also quite intuitive: the maximum amount
of information is obtained if the search is conducted away from known data points in
empty parts of the search space.

2The often ignored difference is of conceptual importance in this problem. See http://www.

ccrnp.ncifcrf.gov/~toms/information.is.not.uncertainty.html for a detailed discussion.
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3. Risk-Based Algorithm. The optimisation problem analysed in the previ-
ous section can be formulated as a weighted sum of two objectives. First one is
maximising the estimated objective function and the second is acquiring information
in the most efficient manner This formulation, presented in [2], allows to address the
exploration versus exploitation trade-off explicitly. However, if the maximum value
of the objective function f∗ can be estimated, it is possible to develop a risk-based
alternative formulation, which is the main contribution of this paper.

Risk in laymen terms means “something bad could happen”. A longer definition
is “the probability and magnitude of a loss, disaster, or other undesirable event” [4].
In this case, the magnitude of loss is |f∗ − f(x̃)|, where x̃ = argmaxx∈D f(x) is the
best point found after the search. The probability of loss is denoted by 0 ≤ prisk ≤ 1.
Thus, the formal definition of risk given the set of observations, D, in the context of
the optimisation problem analysed is:

R(D) = (f∗ − f(x̃)) prisk. (3.1)

It is assumed that the probability of loss (PrL), prisk, has the following proper-
ties: (i) If no data (observation) is available on the objective function, then PrL is
maximum, prisk = 1. (ii) If the problem space is exhaustively searched, i.e. the ob-
jective function is completely known, then PrL is minimum, prisk = 0. (iii) The PrL
is non-increasing in the number of observation made, i.e. the learning model is accu-
rate enough such that each new data point x̃ improves the quality of the estimates,
prisk(D ∪ x̃) ≤ prisk(D).

A metric satisfying these properties is normalised uncertainty defined as the cur-
rent aggregate entropy Hc given in (2.6), divided by the initial entropy, H0. Thus,
the following risk-based optimisation problem is obtained:

min
x̃∈Θ

R = (f∗ − f(x̃))
Hc(x̃)

H0

. (3.2)

Note that, it is possible to solve (3.2) iteratively by adopting a greedy algorithm,
which is equivalent to addressing Problem 1. Let Hprev be the entropy before the
observation is made and the information provided by data point x̃ be I = Hprev −
Hc(x̃). Then, the risk after the observation is

R =
f∗Hprev

H0

− I
f∗

H0

− f
Hprev

H0

+ f I
1

H0

.

Since f∗, H0, and Hprev are constant, (3.2) can be re-written as

max
x̃∈Θ

I(x̃)f∗ + f(x̃)Hprev − f(x̃) I, (3.3)

where f(x̃) = max(f(x̃), f(D)). As in [2], it is possible to use variance as an approx-
imation of information leading to I(x̃) ≈ v(x̃)/ |Θ|. The resulting greedy risk-based
optimisation scheme is summarised in Algorithm 1.

4. Numerical Example. The Algorithm 1 is illustrated on the two-dimensional
inverted Ackley function [1]. A uniformly random sampling of the domain X =
[−1, 1]2 with 5000 points defines the search space Θ. The Gaussian kernel in (2.2)

with variance 0.1 is chosen for estimating f̂ . The stopping criterion (risk threshold)
is chosen as T = 0.1. The initial data point is chosen as x = (1, 1). The algorithm
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Algorithm 1 Greedy Risk-Based Algorithm

1: Input: Function domain, X , GP meta-parameters, risk threshold T , initial data
set (D, y).

2: Use GP with a Gaussian kernel and specific expected error variances for function
f̂ estimation.

3: while Risk R > T do
4: Sample domain X to obtain Θ(n) (or as a simplification, Θ(n) = Θ ∀n).

5: Estimate f̂ based on observed data (D, y) on Θ(n) using GP regression.

6: Compute variance, v(x), of f̂ (2.4) on Θ(n) as an estimate of I.
7: Choose the point that solves (3.3) as the next observation, y(x̃).
8: Update the observed data (D, y).
9: end while

reaches the threshold in less than 25 observations. The results are depicted in Fig-
ures 4.1 and 4.3. The search path on the search space, which starts at x = (1, 1)
is shown in Figure 4.2. This and similar numerical experiments indicate that the
algorithm is more conservative yet more robust when compared to the fine-tuned
weighted-sum scheme in [2].
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Fig. 4.1. Optimisation of the inverted inverted Ackley function.

5. Conclusion. A risk-based black box optimisation algorithm is developed to
address nonconvex multi-variable optimisation problems often encountered in wired
and wireless network resource allocation. Information limitations both in terms of
search budget and objective function define this class of problems. Unlike the results
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Fig. 4.2. The search path from starting point (1, 1) until the point when risk threshold is reached.
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in [2], the algorithm here aims to reduce risk in a greedy manner instead of strik-
ing a balance of information and maximisation or emphasising first search and then
maximisation. Hence, it brings a novel perspective to the problem. In addition, it
is observed to be more robust than alternatives in [2] due to its emphasis on “risk
reduction”.
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