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Abstract— We propose a novel, dynamical systems-based
approach for analysis and control of the complex dynamic
behavior arising in communication networks. Specifically, we
consider the Active Queue Management (AQM) problem and
study the non-equilibrium behavior observed as a result of
the interaction between deterministic queueing and nonlinear
flow-control dynamics using a stochastic characterization. The
asymptotic dynamics are interpreted using invariant measures
of certain stochastic operators. For computational tractability,
we use set-oriented numerical methods to construct finite-
dimensional Markov models including control Markov chains
and hidden Markov models. Based on the stochastic model
constructed, we pose and solve the AQM control problem using
Markov Decision Processes (MDPs). The framework developed
is demonstrated through a numerical study of an example
AQM scheme, which shows persistent non-equilibrium queue
behavior under the optimal control strategy.

I. INTRODUCTION

Communication networks such as the Internet exhibit
a wide variety of non-equilibrium and complex behavior.
Examples of such behavior include user flow rate oscillations
in the presence of delays [1], dynamic synchronization of
the flows passing through the same bottleneck link [2], and
chaotic behavior of user flows and queues at the routers [3].

The control of complex networks has been a focus of
much recent research interest. Kelly’s framework for net-
work capacity optimization [4], [5] together with control-
oriented stability analysis of these solutions in the context
of congestion control problems has had an important im-
pact [6]. The game theoretic approach to network control
and optimization has been another avenue of research [7]–
[9]. However, much of this line of research has focused
on a single-point equilibrium solution and analysis of its
stability properties. On the other hand, there exists significant
evidence in literature for complex and chaotic queue behavior
in Internet-type networks and their models [3], [10], [11].
From a practical viewpoint, the control of such behavior
could play an important role in the performance of the overall
congestion control scheme.
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This paper is concerned with the analysis and control
of non-equilibrium behavior in communication networks
without resorting to single-point equilibrium analysis and
design. As a starting point, we consider here the Active
Queue Management (AQM) problem. The AQM provides
a mechanism by which a link (router) sends congestion
notification to the users. In particular, an AQM algorithm
uses the queue length information to either mark or drop
packets. The latter is the case in the widely-used droptail
algorithm. Random Early Detection (RED) and its variations
are other well-known examples of AQM algorithms [6]
with different characteristics, which has been proposed and
studied by the research community [12]–[15].

In this paper, we represent, for modeling and control,
the dynamic variables by their stochastic counterparts. Even
though the models are deterministic, the analysis and control
approach is stochastic. This enables us to go beyond the
frameworks based on a single equilibrium-point. The mod-
eling approach is based on the methods of Ergodic theory
for representing complex behavior in nonlinear dynamical
systems. In particular, we replace the dynamical models by
their stochastic counterparts - the so-called Perron-Frobenius
operator [16], [17]. While, the dynamical model propagates
the initial condition, the Perron-Frobenius (P-F) operator
propagates uncertainty in initial condition. The upshot is that
it is frequently easier to represent the complex asymptotic
dynamic behavior as invariant probability measures of the
P-F operator. In the context of this paper, we do this to
represent and model the queue behavior.

For computational tractability, we use set-oriented numer-
ical methods for discretization of the dynamical systems;
cf. [18], [19]. The idea is to use these simulation based
methods to construct finite-dimensional Markov chains from
the dynamic model. These Markov chains are used for
both computational analysis and control design. A somewhat
different Markov modeling of communication networks has
additionally been considered in [20], [21]. However, appli-
cation of the stochastic modeling approach for control of
non-equilibrium behavior in AQM appears to be novel.

For control, we propose a Markov Decision Process
(MDP) based framework for optimization of the asymptotic
dynamics. Even though the control framework considered
is quite general, we use – without any loss of generality –
an AQM control structure similar to RED for demonstration
purposes. We pose and solve the control problem as a MDP
where the full state – user and queue behavior – is observed,
and as control of Hidden Markov Models (HMMs) where
only the queue size is observed. Both the analysis and control
are verified using simulations in MATLAB.



The outline of this paper is as follows. In Section II, the
network model of user and queue behavior is presented. In
this section and in Section III, stochastic modeling of the
network model together with its discrete approximation as
finite-dimensional Markov models – control Markov chains
and hidden Markov model – is presented. In Sec. IV, an
MDP based framework for estimation and control of these
models is summarized. The simulation results demonstrating
control of non-equilibrium behavior in AQM are described
in Sec. V, and conclusions appear in Sec. VI.

II. STOCHASTIC MODELING OF NETWORK DYNAMICS

We consider a network consisting of a single bottleneck
link of fixed capacity C shared by M users. Instead of
conducting a packet level analysis of the network we use
a discrete-time network model based on fluid approxima-
tions [6], [7]. Each user is associated with a unique con-
nection for simplicity and transmits with a nonnegative flow
rate xi over this bottleneck link. The ith user is assumed to
follow a TCP-like additive-increase multiplicative-decrease
flow control scheme responding to the observed rate 0 ≤
p ≤ 1 of marking (or depending on the implementation,
dropping) of its packets,

xi(n + 1) = xi(n) + κ

[
1
di
− βixi(n)2p(n)

]+

, (1)

where κ denotes the step-size, and di and βi denote the user-
specific rate increase and decrease parameters, respectively.
The function [x]+ = x for nonnegative values of x and is
zero otherwise. Here, n denotes the discrete time instance
normalized with respect to the round trip time (RTT) of users.
However, the effect of information (feedback) delay is not
taken into account.

If the aggregate sending rate of users exceeds the capacity
C of the link then the arriving packets are queued in the
buffer q of the link. The non-negative queue size evolves
according to

q(n + 1) = q(n) +

[
M∑

i=1

xi(n)− C

]+

. (2)

For simulations, we sometimes consider an ideal buffer of
infinite size in order to compare various queue management
schemes. Finally, p(·) in Eq. (1) is set by the AQM control
and will be discussed in Sec. III.

We study the deterministic network model’s dynamics
using a stochastic framework. For stochastic modeling, it is
first assumed that all the users are symmetric and have the
same parameters, di = dj and βi = βj ∀i, j = 1, . . . , M , as
well as same initial conditions. Consequently, the user flow
rates are also symmetric x = xi i = 1, . . . , M . The system
dynamics in the symmetric fixed-point space are

x(n + 1) = x(n) + κ

[
1
d
− βx(n)2p(n)

]+

q(n + 1) = q(n) + [Mx(n)− C]+
. (3)

We denote these equations as a dynamical system T : X ×
Q → R2, where X ⊂ R1 is the compact state-space for x(·)

and Q ⊂ R1 is the compact state-space for q(·). We define
S

.= X ×Q.

Remark II.1. It is possible to approximately treat the asym-
metric multi-user case just like the symmetric one by
formally replacing the symmetric flow rate x in (3) with
the average flow rate of asymmetric users (1/M)

∑M
i=1 xi.

Admittedly, such a study of the asymmetric case is only an
approximation. Sec. V describes some simulation results with
the asymmetric multi-user model.

In stochastic settings, the basic object of interest is the
Perron-Frobenius (P-F) operator P corresponding to the
dynamical system T . It is given by P[µ](A) = µ(T−1(A)),
where A ⊂ B(S), the Borel σ-algebra of S and µ ∈M(S),
the measure space on S. While the dynamical system T
describes the nonlinear evolution of an initial condition, the
P-F operator P describes the linear evolution of the uncer-
tainty (probability density function) in initial conditions. An
invariant measure is a probability measure that is also a
fixed-point of the P-F operator P, i.e., Pµ1 = 1 · µ1. The
advantage of using a stochastic framework is that asymptotic
dynamics of T can be interpreted as invariant measures of
the stochastic operator P. From Ergodic theory, an invariant
measure is always known to exist under the assumption that
the mapping T : S → S is at least continuous and S is
compact; cf., [16].

The set-oriented numerical methods have recently been
employed for constructing efficient finite-dimensional ap-
proximations of the P-F operator; cf. [18], [19]. The ap-
proximation arises as a Markov matrix defined with respect
to a finite partition SL

.= {D1, · · · , DL} of the phase space
S. Instead of a Borel σ-algebra B(S), consider now a σ-
algebra of the all possible subsets of SL. A real-valued
measure µj is defined by ascribing to each element Dj a
real number. Thus, one identifies the associated measure
space with a finite-dimensional real vector space RL. Using
Galerkin approximations w.r.t SL, the discrete approximation
of the P-F operator is an L× L matrix

Pij =
m(T−1(Dj) ∩Di)

m(Di)
(4)

on the “measure space” RL; m is the Lebesgue measure
[19], [22]. The resulting matrix is non-negative and because
T : Di → S,

∑L
j=1 Pij = 1, i.e., P is a Markov or a row-

stochastic matrix. P is interpreted as a randomly perturbed
approximation of P and P converges to P in L2 as the
partition gets finer and finer [17].

The partition SL for the stochastic approximation of the
network model is constructed by taking a uniform quanti-
zation for the user flow-rates (in X) and queue size (in Q)
between a lower and upper bound. The lower bounds are
taken to be 0 because of the non-negativity of these quanti-
ties. The upper bounds are taken to be suitable multiples of
link capacity and maximum queue buffer size. On account
of computational constraints, we chose 10 quantization levels
for the user flow rate and the bottleneck link queue size. The
two quantized partitions are denoted as X = [X1, . . . , X10]



and Q = [Q1, . . . , Q10] and the partition size L = 100. We
denote SL

.= X ×Q, where the states s ∈ SL are indexed as
{(X1, Q1), (X1, Q2), . . . , (X2, Q1), (X2, Q2), . . .}. We use
a uniform quantization scheme with saturation between the
values 0 − 150 and 0 − 100, respectively, for constructing
the cells in X and Q. The sub-script L is dropped for the
remainder of the paper to simplify the notation.

For the network dynamical system (3), a Markov Model
(MM) consists of a Markov chain with states in S and
transition probabilities (entries of P in Eq. (4)) between these
states. The entry Pij denotes the transition probability of
the next state being in Dj conditioned on the current state
being in Di. The state evolution associated with the nonlinear
dynamical system T (Eq. (3)) is replaced its stochastic
approximation,

µ(n + 1) = µ(n)P, (5)

where µ(·) ∈ RL is the row probability vector.
One approach for numerically approximating P in Eq. (4)

is to use a Monte Carlo algorithm. Here, N uniformly
distributed random samples nin

i = (x, q)i i = 1, . . . , N in S
are used as initial conditions for the dynamical system T in
Eq. (3). Denote nout

i = (x, q)i i = 1, . . . , N , as the image of
these points after one iterate of the dynamical system. After
identifying the input and output samples nin and nout with
the states s ∈ S of the MM, the transition probability from
state i to j is estimated as

P̂ij =

∑
[k:nout

k ∈j]∑
[l:nin

l ∈i]

,

where
∑

[k:nout
k ∈j] denotes the number of points k such that

nout
k ∈ j.
As one takes finer partitions, the invariant measure of

Markov matrix P converges to a weak limit µ∗ that ap-
proximates the invariant measure of the P-F operator P. The
invariant measure of P is a stochastic counterpart of the
asymptotic dynamics (attractor set) of the original dynamical
system (3); see Theorem 3.1 in [19]. In typical situations, the
support of the invariant measure is the attractor set. Thus,
the stochastic MM provides a description of the original dy-
namical system’s asymptotic behavior. Figure 1 compares the
invariant measure µ∗ for the MM corresponding to (3) with
the time-averaged (asymptotic) dynamics of its simulation;
cf., [22]. As shown in the figure, the MM is fairly accurate
in describing the asymptotic behavior of the system.
Remark II.2. We use the simple network model in Eq. (3)
as an example to illustrate the proposed approach. Real
networks exhibit much more chaotic and complex dynamics
than these simplified models. Thus, aspects of the stochastic
approach are perhaps even more suitable to the real networks.

III. CONTROL MARKOV CHAINS AND HMMS

Given the user and queue dynamical system in (3),
we define the AQM control structure using three separate
packet marking (or dropping) schemes p1, p2, and p3. These
schemes, implemented at the bottleneck link, set the value
of p(·) = pu in the user equation. The AQM scheme
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Fig. 1. The time-averaged dynamics and invariant measures from the MM
for (top) the user flow rate x and (bottom) the queue size q; 1-10 are the
10 quantization bins X and Q

p1 corresponds to well-known “droptail” behavior whereas
scheme p2 and p3 can be interpreted as a simple variant of
RED and a very aggressive marking algorithm, respectively.
In all of the schemes, the queued packets are not marked
(corresponds to pu = 0), if the queue size is less than a
certain lower threshold qmin. The packets are always marked
if the queue size is larger than a upper threshold qmax

(corresponds to pu = 1). If the current queue size is between
the two thresholds (qmin < q < qmax), the packets are not
marked in the case of scheme 1 (p1 = 0), half of the packets
are marked randomly in scheme 2 (p2 = 0.5), and all the
packets are marked in scheme 3 (p3 = 1).

The AQM control modifies the dynamical system (3) and
leads to control Markov chains Pu, where u ∈ {1, 2, 3}
corresponds to the choice of control scheme pu. The Pu

ij

denotes the probability of the next state being in Dj condi-
tioned on the current state being in Di and control being u.
The control Markov chain corresponds to the approximation
of the Perron-Frobenius operator of the control dynamical
system and as such is a straightforward extension of the
discussion in Section II.

The number and properties of these active queue man-
agement (AQM) schemes are chosen for simplicity and
illustrative purposes. Our analysis can be extended to a more
complex control structure in a straightforward manner.

It is not realistic to assume knowledge of both the user
flow rates and the queue sizes for control design. At the
bottleneck link, one would typically know only the queue
size and not the the user flow rates. Therefore, we consider
a hidden Markov model (HMM) for describing the dynamical
system’s behavior in the presence of partial observations. For
the network model, only the set of queue states Q is assumed
to be observed. The emission matrix E maps the set of states
S of the MM to the set of queue states Q.

Remark III.1. Note that all three of the AQM schemes in
Section III do not mark (or drop) packets if the queue size
is less than qmin. This behavior is needed in order to ensure



the observability of the system and states in the HMM.
Otherwise, given the observed queue states Q (through
emission matrix E) it would not be possible to estimate the
full state S .

IV. OPTIMIZATION, CONTROL, AND ESTIMATION

Now that we have a Markov model on a finite state space
S with finitely many control actions u = {1, 2, 3}, we pose
the control problem as a Markov Decision Process (MDP). In
particular, given a state s ∈ S , we would like to determine
the optimal policy s → û(s) such that a certain expected
reward

max
û(s(0))

E

[∑

k

αkR(s(k))

]
(6)

is maximized over a time horizon. The expectation is taken
with respect to the Markov model and α denotes the discount
factor. It is chosen as 0.3 for the results in this paper. The
reward function R(s) is defined over the states in S and
is depicted in Figure 2. It is chosen to be the largest for
a queue size between 10 and 20. The expectation is that
a positive but moderate queue size will ensure maximum
capacity utilization while preventing large queue fluctuations
and resultant buffer overflows. For large values of queue, the
state with large values of user flow rate are penalized more
than those with smaller values. For very small queue size,
lower values of user flow rate are penalized.
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Fig. 2. The reward function on X ×Q.

The solution of the optimization problem in (6) is obtained
by solving a linear program

min
û

∑
s

zs

subject to zs ≥ R′(s) + α
∑

s

Pu
sjzs ∀ s, u

zs ≥ 0 ∀ s. (7)

Here zs for s = 1, . . . , L are auxiliary variables, and R′ =
R + c, where c is chosen such that R′ is non-negative; cf.,
Chapter 6 in [23]. Figure 3 depicts the resulting stationary
optimal policy solution û. We note that the stationary policy,
while being more general, is not very different from the
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Fig. 3. The optimal strategy (actions) obtained as a result of solving the
MDP.

existing AQM schemes such as RED in terms of dependence
of p(·) on queue size. In particular, the policy drops (or
marks) packets aggressively for larger queue sizes.

Using the optimal policy û, we also computed the invariant
probability measures of the controlled Markov matrix P û for
user flow rates (in X ) and queue size (in Q). These measures
were found to compare favorably with the asymptotic distri-
butions obtained from the time-domain simulations of the
closed-loop dynamical system (3) with the optimal policy.
The latter are shown in Figure 4. We note that either of
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Fig. 4. The asymptotic stationary probabilities of the states in (top) X (flow
rate) and (bottom) Q (queue size) under optimal AQM control.

these results point to non-equilibrium queue behavior with
the optimal policy. The details of the simulation results will
be discussed in the following section.

To test the optimal policy for the practical situation where
the user flow rate is hidden, we applied the Viterbi algo-
rithm [24] to estimate the state (in S) from the time-series
of the simulation. In particular, given the HMM consisting of
E, Pu (u = 1, 2, 3) and given a sequence of m observations
at the bottleneck link o := [o1, . . . , om], oi ∈ Q, we estimate
the single best state sequence (path) ŝ = [ŝ1, . . . , ŝm] of the
real state sequence s = [s1, . . . , sm], s ∈ S . The chosen



TABLE I
SIMULATION MODEL PARAMETERS

Link capacity C = 1000
# of users M = 10
Queue bounds qmin = 10, qmax = 100
Symmetric user parameters κ = 0.01, d = 0.01, β = 0.1
Asymmetric user parameters di ∈ [0.008, 0.015], βi ∈ [0.08, 0.15]

estimation criterion was to maximize P (ŝ | o, Pu, E) given
the observations o.

V. SIMULATIONS

In simulations carried out with Matlab, we chose the
bottleneck link capacity as C = 1, 000, and the number of
users as M = 10. Table V summarizes these together with
other simulation parameters for the dynamical system model
in (3). A Monte Carlo algorithm with 100, 000 sample points
was used for constructing the Markov models (matrices Pu)
with each of the three AQM schemes.
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Fig. 5. Results of the simulation with a state-dependent optimal policy: (top)
The evolutions of user flow rate x, link queue size q, the state s of the MM,
and (bottom) the AQM scheme deployed versus time are shown.
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Fig. 6. Results of the simulation with the drop-tail AQM scheme: the
evolutions of user flow rate x, link queue size q, the state s of the MM
versus time are shown.

We first simulated the system with the assumption that the
full state is known. The AQM control actions correspond to
the stationary optimal policy computed off-line as a result

of the MDP described in Section IV. Figure 5 depicts the
evolution of the controlled system – x (averaged over 10
users), q, and state s – as a function of time. Also shown is
the sequence of control actions, i.e., specific AQM scheme at
any given time instance. Note that the average queue size is
approximately 15 with near capacity utilization. Averages of
the non-equilibrium solution are consistent with the choice
of reward function used for MDP and shown in Figure 2.
In order to compare this with the standard AQM, we next
simulated the system with AQM scheme 1 (droptail) used for
all times. These results are shown in Figure 6. It is evident
from the two figures that while either of the two solutions
are non-equilibrium, the MDP based solution is clearly better
because it shows a larger user capacity utilization, smaller
queue fluctuations, and averages close to the requirement
with respect to the reward function. In summary, the MDP
based solution uses the state information to better anticipate
the congestion and adjust the packet marking accordingly.
That it is able to do so with non-equilibrium queue behavior
that still achieves very close to maximum capacity utilization
(see Figure 5) is notable.

In the subsequent simulation, we considered the more
practical case where only the queue size was assumed to be
known. For the HMM, we used the Viterbi algorithm (Sec-
tion IV) for state estimation. We formally assumed certainty
equivalence to hold and treated the estimate as the state.
Using stationary policy with respect to estimates still yielded
promising results as shown in Figure 7. The estimation
errors had little detrimental effect on the performance of
the algorithm. Analysis of this will be the subject of future
investigations.
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Fig. 7. Results of the simulation with a state estimation based feedback
control: (top) the evolutions of user flow rate x and link queue size q;
(bottom) the real s vs. estimated ŝ state of the HMM and the AQM scheme
deployed vs. time are shown.

Finally, we also carried out simulation based studies for an
asymmetric multi-user case with M = 10 number of users.
Table V summarizes the simulation parameters. The users are
asymmetric because the parameters di and βi for individual
user i is picked from a uniform distribution whose range is



indicated in the table.
In order to test the robustness of our method, we used the

stationary policy and estimation based on the reduced order
symmetric model. The symmetric user flow rate variable
x was formally replaced by the average flow rate for the
M asymmetric users. As a result, there are modeling errors
introduced because of the reduction in dimension (M states
to a single state) and averaging. Note that the simulations
were carried out with the M + 1-dimensional asymmetric
multi-user dynamical system (1) and (2). Figure 8 depicts the
results of the simulation with estimation and control using
the symmetric stationary policy. Remarkably, even though
the dynamic behavior now is more complex (see for example,
the queue trajectory), the performance shows good average
capacity utilization (for x) and queue size q within limits as
dictated by the reward function.
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Fig. 8. Results of the simulation with a state estimation based feedback
control for the asymmetric multi-user case: (top) the evolutions of average
flow rate x and link queue size q; (bottom) the real s and estimated state ŝ
of the HMM and the AQM scheme deployed versus time are shown.

VI. CONCLUSION

In this paper, we outlined a dynamical systems based
framework for stochastic modeling, model computations,
analysis, estimation, and MDP based control of nonlinear
problems in communication networks. The framework was
demonstrated for the problem of Active Queue Manage-
ment (AQM). Even though the results were presented using
a simple AQM control structure and a particular choice
of optimality criterion, the framework is applicable more
generally. The two ideas of set-oriented computations of
Markov models and symmetry-based averaging over user
flow rates were effectively used to manage complexity in
estimation and control design. Extensive simulations with
asymmetric multi-user models demonstrate both the applica-
bility and robustness of our approach. A unified and rigorous
theoretical framework for control and optimization of non-
equilibrium dynamic behavior in communication networks
together with its applications is a subject of continuing
research investigation.

REFERENCES

[1] S. Shakkottai, R. Srikant, and S. P. Meyn, “Bounds on the through-
put of congestion controllers in the presence of feedback delay,”
IEEE/ACM Transactions on Networking, vol. 11, no. 6, pp. 972–981,
December 2003.

[2] H. Han, C. Hollot, D. Towsley, and Y. Chait, “Synchronization of tcp
flows in networks with small droptail buffers,” in Proc. of the 44th
IEEE Conference on Decision and Control, Seville, Spain, December
2005, pp. 6762–67.

[3] A. Veres and M. Boda, “The chaotic nature of TCP congestion
control,” in Proc. IEEE Infocom, vol. 3, March 2000, pp. 1715–1723.

[4] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: Shadow prices, proportional fairness and stability,” Journal
of the Operational Research Society, vol. 49, pp. 237–252, 1998.

[5] F. P. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, vol. 8, pp. 33–37, January 1997.

[6] R. Srikant, The Mathematics of Internet Congestion Control, ser.
Systems & Control: Foundations & Applications. Boston, MA:
Birkhauser, 2004.
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