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Abstract— We present a non-equilibrium analysis and control
approach for the Active Queue Management (AQM) problem
in communication networks. Using simplified fluid models, we
carry out a bifurcation study of the complex dynamic queue
behavior to show that non-equilibrium methods are essential for
analysis and optimization in the AQM problem. We investigate an
ergodic theoretic framework for stochastic modeling of the non-
equilibrium behavior in deterministic models and use it to iden-
tify parameters of a fluid model from packet level simulations.
For computational tractability, we use set-oriented numerical
methods to construct finite-dimensional Markov models including
control Markov chains and hidden Markov models. Subsequently,
we develop and analyze an example AQM algorithm using a
Markov Decision Process (MDP) based control framework. The
control scheme developed is optimal with respect to a reward
function defined over the queue size and aggregate flow rate.
We implement and simulate our illustrative AQM algorithm in
the ns-2 network simulator. The results obtained confirm the
theoretical analysis and exhibit promising performance when
compared with well-known alternative schemes under persistent
non-equilibrium queue behavior.

I. INTRODUCTION

control in non-equilibrium settings. For illustrative pases,
we consider here the Active Queue Management (AQM)
problem. The AQM provides a mechanism by which a link
(router) sends advanced congestion notification to thesuser
In particular, an AQM algorithm uses the queue length in-
formation to either mark or drop packets. The latter is the
case in the widely-used droptail algorithm. Random Early
Detection (RED) [15] and its variations such as AVQ [16],
REM [17], BLUE [18], and E-RED [19] are other well-
known examples of AQM algorithms [9], [20] with different
characteristics, which have been proposed and studiedeby th
research community.

In [11], a fluid-flow model of TCP interacting with AQM
schemes is linearized around the equilibrium. Then, the AQM
analysis and design is formulated as a linear control proble
whose stability properties are investigated. Linear $tgbi
properties of networks with TCP-RED interaction has been
studied in [13]. A mean-field model based on N-particle
Markov process and for the congestion windows of multi-
ple TCP sources multiplexed through a buffer implementing
RED has been presented in [21]. Through simulation studies

Communication networks such as the Internet exhibit £ an asymptotic analysis the applicability of the model is

wide variety of complex dynamic behavior. Examples of sucksiaplished. In addition, stability and robustness prigser
complex behavior include user flow rate _osqillations in thef the resulting system with respect to time delays have
presence of delays [1], dynamic synchronization of the flowen identified. A nonlinear and bifurcation analysis of RED
passing through the same bottleneck link [2], and chaolig, 3 TCP network has been conducted in [22] where a
behavior of user flows and queues at the routers [3]. discrete-time dynamical model is used to analyze the TCP-

The control of complex networks has been a focus of mughep operating point and its stability with respect to vari-
recent research interest. Much of this line of researchgtew 5,5 RED controller and system parameters. In a subsequent
has focused on a single-point equilibrium solution and ysisl study [23], a stochastic model of a bottleneck RED gateway
of its stability properties. We note Kelly's framework for,nder a large number of heterogeneous TCP flows has been
network capacity optimization [4], [5] and game theorefit a proposed and the asymptotic behavior of the system has been
proaches for network control and optimization [6]8]. Ba¢ jnhyestigated. More recently, the interaction between tadsi
these approaches lead to a static optimal equilibrium golut ;ncrease multiplicative-decrease (AIMD) congestion coint
Lyapunov functions [9], [10] and linear control theoretietf  5nq droptail AQM schemes is investigated through models
ods [11]-[14] are then used to ensure its dynamic stability.ut“izing nonnegative matrix theory [24].

This paper is concerned with the analysis and control of Ajthough much of control-oriented analysis and design has
complex behavior, referred to as non-equilibrium dynamicgppeared within linear settings, there is significant eveeein
in communication networks. Neither static optimizationr nQjterature for complex and chaotic queue behavior in Irgern
linear control theoretic approaches are suitable for amlyr type networks and their models [3], [22], [25], [26]. Non-

o ) ) ) ) equilibrium fluctuations in queue behavior has been observe
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both experimentally and numerically [25], [27]. For appiep
ate parameter values, the simplified fluid models also eihibi
persistent non-equilibrium behavior [3], [22], [28]. Them
equilibrium behavior in queues may be due to random noise or
could arise as self-excited “chaotic oscillations” andr¢hare
suggestions for both in the literature [27]. Papers corexérn



with deriving mean or limit models [23], [29], [30], obtairg The stochastic modeling approach we take enables us to
AQM performance with linear control methods [11], [31], oicarry out:

with carrying out describing function based analysis [3pjit+ Bifurcation analysis: Although the methods of local bifur-
cally assume a random noise. The papers concerned with lozation theory can be used to analyze the instability and
instability/bifurcation analysis [22], [33]-[36], and I@pal) (local) onset of bifurcation as in [33], [35], these methods
numerical investigations [1], [3], [22] using determimisfiuid are less relevant to the AQM problem because of the global
models show these oscillations as self-excited. With stmphature of the queue oscillation and presence of disconisui
fluid models, analytical methods from bifurcation theoryéia such as saturations in these models. For instance, theichaot
been used to show that these self-excited oscillations Ga@ aoscillations have been typically studied using numerigals

as a result of supercritical Hopf bifurcation [33], [35]/]3and lations as in [3], [22]. Stochastic methods, on the otherdhan
of period doubling and border-collision bifurcations [22]  enable analysis of the asymptotic chaotic dynamics in terms

Even though the methods of this paper are relevant ob invariant measures [38]. Bifurcations in chaotic regicas
both noise-driven and self-excited cases, we are primarlye understood via analysis of the spectrum of the P-F operato
motivated by the analysis and control issues for the latter the support of the invariant measure [45]. In particubee,
case, i.e., where the non-equilibrium queue behavior @riggse these results to understand qualitative changes inequeu
as a result of nonlinear dynamics and not random noideehavior.

In such a case, there is a gap between available methédisntification of the fluid model parameters from packet
that focus on static optimization, and simulations thatwshdevel ns2[46] simulations: In the non-equilibrium regime, the
persistent non-equilibrium behavior that does not need argsults of both the fluid-model as well as the ns-2 simulation
noise. From a practical viewpoint, explicit analysis andtoal  display rich time-series behavior. As a result, the quastib

of non-equilibrium behavior could play an important role imow well fluid models approximate the reality or even ns-2
the performance of the overall congestion control scheme. simulations is not straight-forward [47]. We validate thad}

In the remainder of this section, we discuss the maapproximation based results with the ones of ns-2 simuiatio
elements of the proposed approach. We represent, for mbg-comparing the two invariant measures using fHenorm
eling and control, the dynamic variables by their stocltastas metric. We use this comparison to justify the choice of the
counterparts. Even though the models are deterministee, fharameters for the fluid model.
analysis and control approach is stochastic. This enatdesQontrol synthesisfor shaping non-equilibrium behavior: We
to go beyond the frameworks based on a single equilibriumpropose a Markov Decision Process (MDP) based framework
point. The modeling approach is based upon the methodsfof optimization of the asymptotic dynamics. Even though
Ergodic theory for representing complex behavior in nadin the control framework considered is quite general, we use
dynamical systems. In particular, we replace the dynamicaithout any loss of generality an AQM control structure
models by their stochastic counterparts - the so-calletbRer similar to RED for the purposes of this paper. We pose and
Frobenius (P-F) operator [38]-[40]. While, the dynamicaolve the control problem as a MDP where the full state —
model propagates the initial condition, the Perron-Fraleen user and queue behavior — is observed, and as control of
operator propagates uncertainty in initial condition. Thain Hidden Markov Models (HMMs) where only the queue size
advantage is that it is generally easier to represent thglexm is observed. Both the analysis and control are verified using
asymptotic dynamic behavior as invariant probability nuieas simulations in MATLAB.
of the P-F operator. In the context of this paper, we do this toThe outline for the rest of the paper is as follows: In
represent and model the queue behavior. Section Il, a well-known network model of user and queue

For computational purposes, we use set-oriented numeribahavior along with an equilibrium and stability analysfs o
methods for discretization of the dynamical systems; cf],[4 the Droptail scheme is presented. In Section lll, a stoahast
[42]. Our goal is to use these simulation based methods mdeling of the network together with its discrete approxi-
construct finite-dimensional Markov chains from the dynamimation as finite-dimensional Markov models is described and
model. These Markov chains are then used to carry oused to carry out bifurcation analysis as well as identificat
numerically, dynamic analysis and control design. A sonmawhof network model parameters using the ns-2 simulations. In
different Markov modeling of communication networks haSection V, an MDP-based framework for optimization and
additionally been considered in [43], [44]. In [43], a Hidde control of these models is summarized. The Matlab and ns-
Markov Model for a communication channel has been studi@dsimulation results demonstrating control of non-eqpiililm
where the channel switches between different states. Edghavior under the AQM algorithm developed are described
state corresponds to the probability that a packet sent oweiSection VI. The paper ends with the concluding remarks of
the channel will be lost. In [44], a Markovian Model forSection VII.
the RED algorithm has been proposed where the states are
composed of the (average) queue size and some flags. Using I
this model, the impact of RED on the mean delay and
loss rate has been analyzed. The basic idea of our wét
— use of stochastic approaches for analysis and control olMWe consider a single bottleneck link of a network with
non-equilibrium dynamic behavior in deterministic networfixed capacityC' shared byM users. Instead of conducting a
settings — is very different in nature and novel. packet level analysis of the network, we adopt a network hode

. DETERMINISTIC FLUID MODEL
k Single Bottleneck Link with Symmetric Users



based on fluid approximations [6], [9]. Each user is assediatB. Synchronization to symmetric fixed-point space

with & unique connection for simplicity and transmits Withrheorem I1.1. Consider the multi-user setup of (1)-(2), where
a nonnegative flow rater; over this bottleneck link. For , — p(4) and F satisfies the condition that(B) > 0 then the

z; € R* =0, 00), thei' user is assumed to follow a transfelgynchrony subspacé is asymptotically stable, i.e., ds— oo,
control protocol (TCP)-like additive-increase multigltve- zi(t) =z, (t) forall i =1,..., M.

decrease flow control scheme, _ -
Proof. To show asymptotic stability, we use the Lasalle’s

ii(t) =k (1 —ﬂxi(t)Qp(t)> 7 (1) invariance theorem [49]. The steps in the proof are 1) we
d propose a Lyapunov functiolf(z), 2) setF = {z € Q C
where0 < p < 1 is the observed rate of marking (or depending ™|V (t) = 0}, where( is a compact positively invariant
on the implementation, dropping) of its packetsjenotes the With respect to (1), and 3) show that the largest invariant se
step-size, andl and 3 denote the (symmetric) rate-increasé" £, denoted byM, lies in SN Q. We outline the three steps
and decrease parameters, respectively. For a presgripgd below:
the ODE (1) has a well-defined solution & for all time 1) The Lyapunov function is taken to be

because the right hand side is Lipschitzaip and R™ is a M
positively invariant set with respect to (1). This is becgaus Vi(z) = }Z(l,i — o) (5)
#;(t) = & > 0 at the boundary:; = 0. We use the underline 2~
notationxz = (x1,...,2r) to denote the vector of user flow Usi . L .
Y sing (1), the time derivative of (5) is

rates, wherez € RTM, 9 (@) ’ ®)

The packet marking occurs at the link whose dynamics are . M )
next described. If the aggregate sending rate of users éscee V(z) = —xb Z(xi — @) (@it 2)p. (6)

the capacityC of the link, then the arriving packets are queued '
in the bufferq of the link. The non-negative queue size evolves  Sincep € [0,1], V(¢) < 0.

according to the ODE 2) Set
e i(t) = C q € (0,B), Q= {xeﬂvM:zi < max(C+B,1)}. (7)
=4 mn0, 2" mt)-C) q=B, (2 Vi
max(o,zf‘il zi(t) — C) g=0. To see thaf is positively invariant, note that; < 0
) _1 i
where we assume a maximum buffer size Bf at which whenevers; > max(C+ B, VBd): This shows that

the trajectories are bounded within $etand thus there
exists a (largest such) compact invariant 3¢t that
contains all the limit points.

3) Finally, we show that\/ C S N Q. Using (6), first note
that if x € E then either (a); = x1, 0r (b)z; =2; =0
forall i = 2, M, or (c)p = 0. We consider case (c) first.

the queue saturates and any incoming packet after this point
is dropped; cf. [11].p(:) in (1) is set by the AQM control
and takes the general form = F(g). As an example,
packet marking for the widely used droptail AQM scheme
is described by

» {0 ,ifg< B 3) Supposep = 0 over a trajectory then using (1),
1 , otherwise. 2i(t) = 24(0) + gt’ ®)
It is the objective of this paper to discuss questions peirgi _ L d(C41)
to 1) (non-equilibrium) dynamic analysis for a given AQM and there exists a finite timg < =7~ 4 B such that
schemeF and 2) control synthesis of the optimal ¢(T) = B andp = F(B) > 0. As a result, any set of
With a large number of user¥/, a detailed non-equilibrium points withp = 0 is not an invariant set and the case

analysis of the multi-user model (1) is infeasible. In order (&) or (b) applies. In both these casgss S. SinceS

to simplify the analysis, we note that the equations are S @ fixed-point space, it contains its invariant set and
equivariant with respect to the permutation group with the M C SN as desired.

group actionz; — x; for i,5 € {1,...,M}. As a result of ]

this symmetry, the linear subspace We denote the symmetric user flow ratezadn the fixed-

S={zeR™™M . g =z} (4) point space, the system dynamics are
is a fixed-point space; cf., [48]. We will refer t§ as the (t) =k é — Bz(t)?p(t) |,
synchrony subspace. In particular, the subspgacepositively
invariant with respect to dynamics of (1). In the following ) . Ma(t) - C ¢ € (0,B), ©)
g(t) =< min(0,Mz(t)—C) ¢=B,

section, we show that the subspdtis also stable with respect
to arbitrary initial conditions of user flow rate, i.e., theeu max(0, Mz(t) - C) 7=0.

flow rates synchronize after a period of transients. As altiesirhe number of the user® is now a system parameter and we
we will analyze the non-equilibrium dynamics of (1)-(2) fowill investigate bifurcations in dynamic behavior with pest
only the symmetric fixed-point space where all the users hawethis and other parameters. We note that the importantteffe
the same flow-rate. of delay has been ignored in this model.



C. Equilibrium and Stability Analysis of Droptail These results are visualized in Figure 1: either an equilibr
In this section, we carry out a preliminary stability an&olution does not exist or when it exists, the user flow rate is

bifurcation analysis of the multi user fluid model (1)-(2)ti 9réater than capacity and the queue is always full.
a droptail AQM (3). The analysis is analytically tractable
because the equilibrium dynamics arise entirely in the fixe , ,
point space. The result is summarized with the aid of tk ¢/M
following Theorem: 35

Bifurcation diagram

Theorem [I.2. Consider the model (1)-(2) with a droptail
AQM (3). Using 3* = é(%)_z to represent the critical

value of 3, we have the following conclusion regarding the
equilibrium solution: 5l

1) For values ofg3 < §*, there exists a unique equilibrium
solution with user flow ratesy; = ©z = \/%Tﬁ and
saturated value of queug = ¢ = B. This equilibrium N
solution, denoted ag, lies in the subspac& and is
stable. 05

2) For values ofg > *, no equilibrium solution can exist. ‘ ‘ ‘ ‘ ‘ ‘ ‘
The asymptotic dynamics are non-equilibrium but lie i % 1o\45 2 25 8 35 4

: . Osﬁ*d(%)é 4.5 C 5 2
the fixed-point spacs. (critical value) Bd( H)

w
T

.7 (equilibrium)

no equilibrium
possible above
critical value

Proof. For an equilibrium solution to exist, there can only b
two possibilities: eithep = 0 or p = 1. The first possibility
is trivially ruled out because in the absence of feedbackfro

the router, the user flow rate; will increase without bound.  For the system (9) under the droptail AQM scheme the

The latter case is more interesting. Supppse 1. Then, the dueue begins “oscillating” about its upper-lintitfor values of
only possible equilibrium of (1) — if it exists — is given by /3 greater than the critical value. Furthermore, even the lsmal

oscillations at the onset are not periodic. Figure 2(a) atspi
z =1 =1/\/dB (10)  an typical time-series of this system and the Figure 2(bjvsho
the largest incursion of these oscillations as a functiothef
(;)arameterﬁ. As observed in Figure 2(a), the queue behavior

%ig. 1. Bifurcation diagram for the droptail AQM.

and is symmetric. Substituting this solution in (9) lead$wo
possible casega) if z > % thengq increases and saturates t
Qmax- According to droptalil, this then leads o= 1 validating
our assumption. This equilibrium point is valid, and pr@dd Q.. w0y 'ese'“”""a‘°‘°S‘"a"°"5’“=°'°°2 I
it is stable, can be observed within a simulatifi). If z < % W | |{

theng decreases and emptiesitdNith droptail, this then leads 8
to p = 0 thereby invalidating our assumption and resulting i §
no equilibrium. s o ito

Now, the conditionz > < is equivalent tog < 3*. The © B
argument above thus shows that an equilibrium solutionatani % om0 w0 @0 |1 1200 100 1600 1800 2000
exist for the range of value§ > 3*. To complete the proof, © e (eea)
we note that the equilibrium > % is locally stable due to e 100
the stability of its linearization: 8

Smallest Buffer Size (inf-norm) for the oscillations
T T T T T T T T
C=1000,M=1, Qmax =100
k=0.1,d=0.01, B =0.0023

‘Equwlibnum
a0l (sat. queue)

R —2&\/55:5, 207{
dg = 0. (11)

0 0.5 1 15 2 25 3 35 4 4.5 5

O () x107

Queue Size

This theorem shows that for sufficiently small feedback 93y 2. (a) Time-series of incipient oscillations f@ = 8*+ and (b) a
B, the queue is full (regardless d8) and the packets arenumerically determined bifurcation diagram of the non-eftiim queue
always being dropped. Such an equilibrium, even thoughbithavior.

is stable, is clearly not desirable. As the feedback gaiis

increased, one reaches the critical value is both complex (non-periodic) and global in the phase space
-2 The non-periodic nature of oscillations arise because ef th

., L1L/C : Ln .
g* = a\7 (12) discontinuity inp. However, even with a somewhat smoother

version of the functiorp(-), the local methods of bifurcation
beyond which the assumptign= 1 is violated. An equilib- theory are perhaps not best-suited for global analysis with
rium solution cannot exist for the range of valugs> (*. large queue oscillations.



TABLE |
MODEL PARAMETERS

Link capacity C = 1000
# of users M =10, M* =25
Queue bounds Qmin =0, Qmaz = 100

User parameters « = 0.05, d =0.01, = 0.0625

The results obtained from the fluid model also shed light to
more realistic simulations such as the ones in ns-2. In thig TEig. 3. Bifurcation diagram in terms of the invariant measme2 dynamics
the “parametep” is implicit and fixed. Using (12), the critical 2 the parametei/ is increased with the droptail AQM.
behavior in ns-2 simulations arises as a function of either
M. In particular, with a fixed” there exists a critical value of
M, denoted by\/*, such that the queue saturatesfér> M*
and oscillates folM < M*.

of these dynamics in terms of invariant measures and their

numerical approximations. We begin by considering the dy-

namical systen¥’ : X x @ — R*2 obtained by sampling the

o solutions of the ODE. In particular, denotét; o, ¢o) to be

D. Parameter Identification the solution operator for the fluid approximation ODE (9) and
For the fluid-approximation (9), the increase-rate paramesetT (zg, qo) = ¢(At; xo, qo). The sampling timeAt is taken

% and the decrease-rate parametef are identified to match to be of the same order as the delay dnrd, ¢0) € X x Q

the ns-2 simulations. Specifically; is identified from the denote the initial condition. The AQM policy will be tested

average slope of the TCP additive increase phase. In orderthe sampled data system with sampling timeAdf. This

to identify the parameter, multiple ns-2 simulations for policy is consistent with the optimization problem that Iwil

different number of userg/ were carried out. From thesebe posed and solved in the following section. In effect, this

simulations, M* was determined as the critical number ofeflects the nature of AQM where a time-period of order round

users for which the queue starts to oscillate. The queuetiip time is used for the AQM policy updaté&l ¢ R*™ denotes

saturated fol/ > M™ and oscillates fon/ < M*. Using (12) the compact state-space fof-), Q = [0, B] C RT denotes

the parameter ) the compact state-space fgf) andS = X x Q.
KB = k(C Y\ (13) In stochastic settings, the basic object of interest is the
- d \ M~ ' Perron-Frobenius (P-F) operatr corresponding to the dy-

mhamical systerf. Itis given byP[v](A) = »(T~'(A)), where

Figure 3 depicts the probability distributions (histogja
obtained from the ns2 time-series data (9). Table II-D depic’t © B(5). the Borelo-algebra ofS and v € M(5), the
asure space afl. T-1(A) denotes the pre-image set, i.e.,

the identified nominal model parameters for the fluid <':1ppro§r—‘_e1 ) ; ,
imation (9). For analysis and control synthesis, we will use  (4) = {z € §: T(x) € A}. While the dynamical system

M = 10 number of users. Note that this corresponds to kg describes the nonlinear evolution of an initial condititre
non-equilibrium queue behavior with droptail AQM. P-F operatorP describes the linear evolution of the uncer-

Before presenting the analysis, we make a few remari@inty (probability density funct_ion) in initial (_:ondit'r[s. The _
regarding approximations implicit in this identificatiowith advantage of using a stochastic framework is that asyneptoti

ns2 simulations, the time-series data shows several &Euﬁiynamics ofT" can be interpreted as invariant measures of the

which are not captured by fluid approximation models. Vigtiochastic operatdP. The invariant measure is a probability
a-vis parameter identification, two approximations had ¢o B'€asure that is also a fixed-point of the P-F opera&tore.,
made. The first approximation was in the determination b1 = ! - vi- From Ergodic theory, an invariant measure is

the critical A *. ns2 simulations show a large range of valugdWays known to exist under the assumption that the mapping

of M with small oscillations about the saturated queue level,: © — S IS at least continuous anfl is compact; cf., [38].
The set-oriented numerical methods have recently been

To accommodate this)/* was identified to be the number : 4 e k ’
of users at the onset of “larger” oscillations; see Fig. 3e TIEMPIoyed for constructing efficient finite-dimensional &pp

second and more significant approximation was in ignorieg tinations of the P-F operator; cf. [41], [42]. The approxifat
delay. Both stochastic and spectral analysis of the timese a11S€S as a Markov matrix defined with respect to a finite
data from ns2 simulations indicate the important effect ®@rtition Sy, = {Dy,---, D} of the phase spacg. Instead
delay. Although, the effect of delay was found to be imparta®f @ Borelo-algebraB3(.5), consider now a-algebra of the all

in establishing a reasonable match to ns2 simulations, lit WP0SSible subsets &;.. A real-valued measure; is defined by
not be considered in this paper. ascribing to each elemefi?; a real number. Thus, one identi-

fies the associated measure space with a finite-dimensigalal r

T ; . T .
. STOCHASTIC MODEL AND BIFURCATION ANALYSIs ~ vector spac_d% ._Usmg Galerkin apprommatlons, the discrete
P-F approximation arises as a matrix

For analysis and control design, we employ stochastic
(Markovian) representations of non-equilibrium dynamics

b m(T"(D;)N D))
These representations aid the analysis of asymptotic spec

v m(D;)

(14)



on the “measure spac®”; m is the Lebesgue measure [42]where E[kmzuteﬂ denotes the number of pointssuch that
[47]. The resulting matrix is non-negative andZit: D; — n¢ut ¢ j. The algorithms for constructing these approxi-
S, Zle P;; =1, i.e.,, P is a Markov or a row-stochastic mations and their numerical convergence properties appear
matrix. P is interpreted as an pproximation Bfobtained by in [50]. As one takes finer partitions, the invariant measure
considering a certain random perturbation of the dynamical

systemT. P converges tdP in L? as the partition gets finer Spectrum for a Single User
and finer [39]. ' T T

The partition Sy, for the stochastic approximation of the 08F XL 8
network model is constructed by taking a quantization fc wl o
the user flow-rates (inX) and queue size (irY) between N
a lower and upper bound. The lower bounds are taken o
be 0 because of the non-negativity of these quantities. Tl oz|/ 1
upper bounds are taken to be suitable multiples of lir m ol . |

E 3 [

capacity and maximum queue buffer size. On account
computational constraints, we chaS¢10) quantization levels ' /

for the user flow rate and the bottleneck link queue size. Tl 04r N X .
two quantized partitions are denoted &s= [X, ..., X22] o8l . ]
and Q = [Q1,...,Qq] and the partition sizel, = 484. ol )< |
We denoteS;, = X x Q, where the states € S;, are in- ' DR

dexed as{(Xh Q1)7 (Xla QZ), sy (X27 Q1)7 (XQ; QQ); .. } _}1 —0‘.8 —0‘.6 —0.‘4 \—;.2; 6 - (;2/ - o.‘4 0‘.6 O‘.B 1

Table Il tabulates the quantization values used for coottm
the cells inX and Q. The sub-scriptZL is dropped for the
remainder of the paper to simplify the notation. Fig. 4. Eigenvalues of the Markov chain for 10 usel$ & 10).

TABLE I

of Markov matrix P converges to a weak limit* that
QUANTIZATION OF STATES (X AND Q)

approximates the invariant measure of the P-F oper&tor
see Theorem 3.1 in [42]. In typical situations, the support o
X3 0 —0.05C/M Q1 0-5 he i : i< th Th h oh
Xo  0.05C/M —01C/M | Qs 510 the |nvar!ant measure is the attractpr' set. us,'t e s$ticha
. MM provides a description of the original dynamical system’
: . 5 - asymptotic behavior.
§§? %32?@{,05%% 82? 19050 _110005 Figure 4 depicts the spectrum of the Markov chRinThere
Xas  1.05C/M —11C/M | Q22 105 —110 is a unique eigenvalue atand the corresponding eigenvector
gives the invariant measure, denotedvasFigure 5 compares
) this invariant measure with the ergodic averages computed
For the network dynamical system (9), a Markov Modglsing time-domain simulation; cf., [47]. As shown in the
(MM) consists of a Markov chain with states i and figure, the MM is fairly accurate in describing the asymytoti

transition probabilities (entries d? in Eq. (14)) between these penavior of the system in terms of probabilities.
states. The entry’;; denotes the transition probability of the

next state being i, conditioned on the current state being in Average Flow Rate x and its Invariant Measure
D;. The state evolution associated with the nonlinear dynami- ! ‘ ‘ ‘ ‘
cal systenl” (Eq. (9)) is replaced its stochastic approximation, e

o
@

Probability
°
=

v(n+1)=v(n)P, (15)

o
o N
x _x
2
L L L

||
80

L L
20 40

)

100 120

wherev(-) € R% is the row probability vector. o
. . . . state x

. One approaCh for numerlca”y_ appro?(lmatlﬁgln Eq (14) Average Queue Size g and its Invariant Meacsfthl/lre

is to use a Monte Carlo algorithm with several short term ‘ ‘ ‘ ‘ o

[

o
®

simulations using the dynamical systdmHere, N uniformly
distributed random samples” = (z,q); i = 1,...,N in S
are used as initial conditions for the dynamical syst&nn "

Eq. (9). Denoten¢“! = (z,q); i = 1,..., N, as the image of | I |
these points after one iterate of the dynamical system.rAfte 0 » “ saeqoo é"" 120
identifying the input and output sampled” and n°“* with

the statess € S of the MM, the transition prObabi"ty from Fig. 5. The time-averaged dynamics and invariant measurestfreriviM for

statei to j is estimated as (top) the user flow rate: and (bottom) the queue sizg 1-10 are thel0
guantization bins¥ and Q

o
@

Probability
°
=

o
[N

max

P = Z[’“”Z”*Gﬂ
Y Z[z;n;nei] ’ The presence of complex spectrum close to the unit circle
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Frequency Comparsion between MM and Time-Series
T T T T T

Time-Series|
--=-MM

Fig. 6. Bifurcation diagram in terms of the invariant measuteft) MM
dynamics, (right) the time-averaged dynamics as the paramétsrincreased
with the droptail AQM.

Frequency

also suggests oscillations in the asymptotic dynamicsf39],
[40], [47]. This is indeed consistent with the results of the
time-domain simulation which exhibit oscillations in them
equilibrium regime. A comparison between the frequency
obtained using spectrum of Markov chain and the Discrete
Fourier transform (DFT) of time-series data is summarized a L .
part of the bifurcation analysis. R o -
Having obtained the Markov model, we carried out a
bifurcation analysis with the number of use¥s serving as a g g Frequency of oscillation of time-averages and MM
parameter. At the critical valugf*, the support of the invariant
measurei changes in a qualitative sense. Figure 6 compares
the invariant measurg for the parameterized MM with the
ergodic averages computed using time-domain simulatiotge set with these finite number of control schemes, i.e.,
The time-domain results with both the ns-2 simulator and thé= {p,.}.2,. These schemes, implemented at the bottleneck
fluid approximation are given. For quantitative comparjsotink, set the value op(-) = p,, in the user equation. The AQM
Figure 7 depicts the.! distance been the invariant measurechemep; corresponds to well-known “droptail” behavior
computed using the MM and the ergodic average with timgereas others can be interpreted as variants of RED, where
series data. Th&' norm between two distributions,, (with the packet marking probability is constant instead of lityea
time-series) ang,,,, (with Markov model) is given in Fig. 7. increasing.

It is defined as The queued packets are not marked (correspongls e 0),
1 _ . 16 if the queue size is less than a certain lower threslipld,, .
lpes = P 1 == 9 Z [es (2) = Pram (3)]- 16) The packets are always marked if the queue size is larger than

a upper threshold),,... (corresponds t@, = 1). Qmaz IS
The L!-error is small indicating that the MM is fairly accurateset to the buffer size3. If the current gueue size is between
in capturing the asymptotic behavior with the time-domaithe two thresholds @,.i» < ¢ < Qmaz), the packets are
simulation over a range of values @f/. Finally, Figure 8 marked according tp, = (v — 1) x 0.1 for u = 1,..., 10.
compares the frequencies of the oscillations obtained frorable Il summarizes the packet marking schemes, where
Markov model and the DFT of the time-series data. We refey, .. = 0 and Q... = 100. The number and properties
the reader to our paper [47] for details on the spectral aiglyof are chosen for simplicity and illustrative purposes. Our

for chaotic systems. analysis can be extended to a more complex control structure
in a straightforward manner.
IV. CONTROL MARKOV CHAINS AND HMM s The AQM control structure modifies the dynamical sys-

Given the user and queue dynamical system in (9), viem (9) and leads to control Markov chai#¥‘, where the
define the AQM control structure using ten separate paclstperscript. corresponds to the choice of the (fixed) control
marking (or dropping) schemes,, v =1,...,10. U denotes scheme,. The elemenf; denotes the probability of the next



TABLE Il
CONTROL PoOLICIES

Rewards Function

POliCy q S szn szn <g< Qmaz q 2 Qmam
p1 0 0 1 w0
pu(u=2—10) 0 (u—1) x 0.1 1

state being inD; conditioned on the current state beinglin

and control being,,. The control Markov chain corresponds

to the approximation of the Perron-Frobenius operator ef tl

control dynamical system and as such is a straightforwa

extension of the discussion in Section Il. ~s0 : ,
It is not realistic to assume knowledge of both the user flo -og - o °

rates and the queue sizes for control design. At the bottlene * 100 w0

link, one would typically know only the queue size and not th X

the user flow rates. Therefore, we consider a hidden Mark

model (HMM) for describing the dynamical system’s behavior

in the presence of partial obgervations. For the networkemodFig. 9. The reward function oft’ x O.

only the set of queue stat&3 is assumed to be observed. The

emission matrixt’ maps the set of states of the MM to the

set of queue state@ and has the structure be made more myopic (i.e. heavily discounting future rewjrd
10 --- 010 --- which can be useful when the system at hand is not fully
0 1 0 1 --- stationary. The optimal reward function is defined by
FE =
: S ’ Jo(s) :=max J.(s), s€S.
00 -1 00 . . . .
oQxX A policy 7*(s) is optimal if J.«(s) = J,(s) for all statess.
where I;; denotes the probability of the current queue in cefform the theory of MDP (see Chapter 7 in [51]), the optimal
Q; conditioned on the state in cel;. reward function satisfies the Bellman operator equation
RemarkIV.1. Note that all three of the AQM schemes in
Secnon IV do not mark (or drop) packets if the queue size Ja(s) = max { g(s) + OKZPf}Ja(j) 7 (17)
is less than,,,in. u 5
V. OPTIMIZATION, CONTROL AND ESTIMATION and the optimal policyr* : S — U is a stationary policy, i.e.,

Now that h Mark del finite stat the control at time: depends only upon the state at time
ow that we have a Markov model on a finite stale spacer.,. gnite state space, as in our case, there are numerous

S with finitely many control actiong/, we pose the control approaches for obtaining the optimal stationary policythie

problem as a Markov Decision Process (MDP). In particulaﬁaper we choose thealue iteration algorithm where the
given a states € S, we would like to determine the optimal '

) : .solution to (17) is obtained using the recursion

policy s — 7*(s) such that a certain expected reward is

maximized over a time horizon. The policy refers to any rule

for choosing control. For optimization purposes, the rear Jri1(s) =max ¢ g(s) +a Y Puli(j)p.  (18)
per stagey(s) is defined over the states # and is depicted ! J

in Figure 9. It is chosen to be the largest for a queue sizmis recursion leads to the optimal stationary policy
between10 and 20. The expectation is that a positive but Using value ofa = 0.3, the reward functiory(s) given in

moderate queue size will ensure maximum capacity utibzati gjy g and the choice of discrete control schemes in Tabje Iil

while preventing large queue fluctuations and resulta_n“ebufWe used (18) to synthesize the optimal stationary AQM policy
overflows. For large values of queue, the states with IargSIution 7 on X x Q. Figure 10 depicts this policy referred
values of user flow rate are penalized more than those W{B’] as NEQM (Non-Equilibrium Queue Management) in the
smaller values. For_very small queue size, lower values ef USemainder of this paper. We note that the NEQM policy, while
flow rate are penalized. _ _ . being more general, is not very different from the existing
Assuml_ng reward per staggs)_ and a policyr, the infinite AQM schemes such as RED in terms of dependengg pbn
horizon discounted reward is given by queue size. In particular, the policy drops (or marks) pecke
i aggressively for larger queue sizes. As such, it provides an
Jr(s) = Ex Z&"Q(S(”))|S(0) =S5, optimization-based explanation of why RED is a reasonable
n=0 AQM scheme in practice.
whereE,. represents the conditional expectation given that the Using the NEQM policy.*, we also computed the invariant
p p g g policy p
policy m is employed, andv < 1 is the discount factor. By probability measures of the controlled Markov matfx~ for
choosing the discount factor lower, the resulting poligas user flow rates (int’) and queue size (i@). These measures,
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Fig. 10. The optimal policys* on X x Q obtained by solving the MDP.

shown in Figure 11, suggest the possibility of non-equillitor
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Fig. 12. Estimated and actual system statesc S = X x Q under AQM
control.

queue dynamics. This was indeed verified using numerid4ith the preceding analysis. Apart from the symmetric user
simulations as discussed in the following section.
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case, we also simulated a case with asymmetric users in
order to test the robustness of the AQM scheme. Table IV
summarizes the simulation parameters for both the symenetri

and the asymmetric user cases.

TABLE IV
SIMULATION MODEL PARAMETERS

Link capacity C = 1000

# of users M =10

Queue bounds qmin = 10, @maz = 100
Symmetric user parameters k= 0.05, d =0.01, 8= 0.0625
Asymmetric user parameters d; € [0.008, 0.015], 3; € [0.08, 0.15]

System Evolution
150 T

Flow Rate
= = = Queue Size

rate) and (bottom (queue size) under optimal AQM control obtained from /M 100 AMAMAAAAAAAMAAAAAAAAAAAAAAMAAAAAAAMAAAAAAAAA @
MM.
50 b
Before describing the numerical simulations, we briefly Sl ,.;,;m;;;;.-“.;;,;;;;;;;;;;,;

discuss the implementation of NEQM policy for the practical

I{'u h .".Im. m mul. T

situation where the user flow rate is hidden. For such a ° % 100 T, 20 20 0
AQM Strategy

case, we applied the Viterbi algorithm [52] to estimate the
state (in S) from the queue time-series. In particular, igive
the HMM consisting of E, P* (u = 1,...
a sequence ofn observations at the bottleneck link :=
o; € Q, we estimate the single best state Time
,$m] of the real state sequence

[015- ..y 0m],
sequence (pathy = [3q,...

,10) and given

Applied Action
o

0 50 100 150 200 250 300

s = [317 e Sm]7 s € S. The chosen estimation criterionFig- 13. Results of the simulation with a state-dependent MERlicy: (top)

was to maximizeP($|o, P",

VI. SIMULATIONS
A. Numerical Analysis in Matlab

E) given the observations.
Figure 12 depicts the typical estimation results obtainé&t w
a window based implementation of the Viterbi algorithm.

The evolutions of user flow rate, link queue sizey, and (bottom) the AQM
scheme deployed versus time are shown.

We begin by describing the results of simulations carried ou
using full state feedback. Using the NEQM policy described
in Section V, the individual user flow rates synchronize

after a short period of transients. Figure 13 depicts the non

We carried out Matlab based simulations with multi-userquilibrium evolution of the controlled systemaz(averaged
fluid approximation models and parameter values consistener 10 users) and the queug — as a function of time.
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Flowrate Oscilltions capacity utilization, smaller queue fluctuations, and ages
104 close to the requirement with respect to the reward function
102 summary, the MDP based solution uses the state information t
better anticipate the congestion and adjust the packetingark
accordingly. That it is able to do so with non-equilibrium
gueue behavior that still achieves very close to maximum
Time capacity utilization (see Figure 13) is notable.

Queue Oscillations . .
TR Next, we describe the results for the more practical case
EEEEEE where only the instantaneous queue gizeas assumed to be
known. For estimation purposes, we used the Viterbi aligorit
as discussed in Section V. We formally assumed certainty
: equivalence to hold and treated the estimate as the state.

[l SN,

250 300 The NEQM was thus applied according to the estimates.
Figure 16 depicts the results of this observer based control
The estimation errors had a noticeable but small effect en th

Time

Fig. 14. Results of the simulation with a state-dependent MERlicy: (top) . . . .
The evolutions of user flow rate and (bottom) link queue sizg¢ are shown. performance of the algorithm. Analysis of this will be the

subject of future investigations.

System Evolution
T

Flow Rate

System Evolution
T

T T T
= = = Queue Size| 120 Flow Rate
120+ = = = Queue Size|

100 ” Q
C/M 100 lo c™m o

Fig. 15. Results of the simulation with the drop-tail AQM sofe the

evolutions of user flow rater, link queue sizeg, the states of the MM  Fig. 16. Results of the simulation with a state estimation dasedback

versus time are shown. control: (top) the evolutions of user flow rateand link queue size; (bottom)
the reals vs. estimated state of the HMM and the AQM scheme deployed
vs. time are shown.

Note that on account of synchronization, also represents

the individual user flow rates. The AQM accomplishes near Finally, we discuss the results of simulations carried out
capacity utilization while maintaining a small average ugie With asymmetric users; see Table IV for the simulation pa-
size. Averages of the non-equilibrium solution are comsist rameters. For the asymmetric case, the parameteamd 3;
with the choice of reward;(s) used in MDP (see Fig. 9). for iM-user were picked from a uniform distribution whose
Figure 13 also depicts the sequence of control actions, i.&@nge is indicated in the table.

the specific AQM schemg,, implemented at any given time We again used the optimal NEQM policy together with
instance. Note that consistent with the MDP based optimizan estimation based on the reduced order symmetric Markov
tion, the stationary AQM policy was applied using an updai@odel. With Markov model, the symmetric user flow rate
of control action everyAt¢ seconds together with a ZOH.x was formally replaced by the s{eratially averaged flow rate
For better illustrating the non-equilibrium aspects ofseld- for the M/ asymmetric users;f >;7, z;). As a result, there
loop dynamics, Figure 11 depicts the invariant measures #f modeling errors introduced because of the reduction in
the asymptotic dynamics and Figure 14 depicts the inditidugimension {// states to a single state) and spatial averaging.
time-series forz and ¢ but now at a greater resolution. Note that the time-domain simulations were carried out with

In order to compare these results against the stand#neé M + 1-dimensional asymmetric multi-user dynamical
AQM, we next simulated the multi-user system with theystem (1) and (2). Figure 17 depicts the results of this
AQM scheme 1 (droptail). The results for droptail are showsimulation. Remarkably, even though the dynamic behavior
in Figure 15. It is evident from the two figures that whilenow is more complex (see for example, the queue trajectory),
either of the two solutions are non-equilibrium, the MDRhe performance shows fair average capacity utilization(j
based solution is clearly better because it shows a larger uand queue size.
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System Evolution oscillations.

C/M 100 Qmax ’ g 7
80l :%s
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F j " :: Fig. 18. Results of the ns-2 simulations (for the parametefabie 1) with
2or 11 oy "o " 1 (a) RED and (b) the NEQM schemes.
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Fig. 17. Results of the simulation with a state estimation dasedback
control for the asymmetric multi-user case: (top) the evohdiof average
flow rate z and link queue sizg; (bottom) the reak and estimated staté
of the HMM and the AQM scheme deployed versus time are shown.

ec)

X (packets) and q (packets/sec)

X (packets) and g (packets/s

5 2 25« W0 5 1 15 2 2
Time (sec) Time (sec)

B. Simulations in Ns2

. . . . Fig. 19. Results of the ns-2 simulations (for the parametei&abie Il) with
We now simulate a multi-user, single bottleneck link scga) proptail and (b) the NEQM schemes.

nario implemented in the network simulator ns-2. We send
25 TCP flows over this duplex link of capacity Mbps
corresponding tol00 packets/second for an average packet We observe a correspondence between the results of ns-2
size 0f 1000 bytes. The maximum queue size is chosen to tmulations and reduced order model analysis. Howeverethe
Qmas = 100 packets and the propagation delay tolsems are also quantitative differences such as the frequencienbn
in the forward direction. of the queue oscillations. In particular, numerical anialys

The NEQM is implemented in ns-2 similar to the othef® reduced order model shows high frequency dynamics.
AQM schemes by extending the C++ queue class. To detéch a difference was also observed during the parameter
mine the state at a given time the current queue size and floientification and discussed therein. Compared to the tesul
rate passing through the link are measured periodicallgichio ©f the reduced order model, the user flow rates with ns-2
that, for real life deployments the current queue size igiga SNOW more stochasticity. We conjecture this to be the effect
available (to a router). Furthermore, a network measuremé&h noise in ns-2 simulations resulting from TCP windowing
tool such asabing [53] can be run continuously in the €ffécts and quantization of the flows via packets. Finallypw
background or variations in the queue size in conjuncticth wiNEQM and RED are compared we observe that their behavior
the link capacity can be utilized to estimate the aggregdfeSimilar. This is not surprising as the four individual sates
flow rate. Once the state is known, the packets are dropgétfd by NEQM are quite close to RED. _
according to the drop probabilities determined by the djpeci In order to mvestlgate_ more realistic network settings, we
AQM scheme dictated by NEQM. For example, if the policf!SO study the effect of disturbances due to varying backgto
ps is active at a time instance then incoming packets are fffic and other factors. Disturbance analysis was cawied
dropped ifg < gmin, they are dropped with probabilitg.3 PY injecting a constant bit rate (CBR) flow, which randomly
if Goin < ¢ < Gmaz, @nd are always dropped i > gme.. 9€creases the link capacity. This flow is randomly injected a
For these simulations a similar set of parameters are usedgrvals of 0.1 seconds as a uniform disturbance of between
the ones in Table IV. However, the number of AQM policie§ @nd250 packets/second corresponding ufid of the link
(Table IIl) are reduced from ten to four in order to simplifyc@Pacity. Figure 20 depicts the user flow-rates and the queue
the implementation complexity in the simulation enviromne Pehavior in the presence of disturbance. We observe a isibl

Figure 18 (a) and (b) compares the queue and the udggradation in RED while the NEQM scheme performs almost

behavior obtained with RED, and the NEQM. We observe thdf 900d as before, which illustrates the robustness pgopert
ns-2 results verify the numerical analysis of the reducetior the NEQM. This result is not very surprising when taking into

model using Matlab. There is better queue utilization wita t ccount the fact that NEQM makes use of both the flow rate

NEQM policy in terms of size and variation as compared @3"d dueue size during its operation.

the droptail as well as RED. We note that, similar to RED,

the mean flow rate shows consistent capacity utilization for VII. CONCLUSION

NEQM flows. On the other hand, we observe in Figure 19 In this paper, we have presented an ergodic theoretic frame-
that there is a strong contrast in the mean user flow raterk for stochastic modeling, model computations, analysi
between NEQM and the droptail scheme, which exhibits heaidentification, and MDP based control of nonlinear dynamics
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Fig. 20. Results of the ns-2 simulations in the presence dfirttiance with
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ED, and (b) the NEQM scheme.

(2]

(3]

(4]

(5]
(6]

(7]

in communication networks. The framework was demonstrated
using both ns-2 simulations and simplified fluid models for
the AQM problem. Using equilibrium and local bifurcation [8]

anal

ysis as well as numerical simulations with simplifieddflu

models, we illustrated the fact that methods for analysis an
optimization of non-equilibrium queue behavior aessen-
tial for a solution to this problem. Next, we presented an
identification methodology for identifying the parameterfs [1q
the nonlinear dynamical system model which explicitly take
non-equilibrium behavior into account. Using stochast[
approximations of this model, an optimization problem wa
defined and solved via standard MDP methods to obtaln
a specific optimal stationary AQM policy, NEQM, as an'?
example. The NEQM scheme developed provides first such
explanation of AQM schemes such as RED and was shovta]
here to perform better than the droptail scheme using ns-2
simulations.
We view the analysis and optimization framework presented

the

here as the first step to better understand the AQM sche
mentioned

in the introduction. As we have discussed

Section I, a study of the non-equilibrium dynamics is calici
for the analysis of non-equilibrium behavior we observe il
networked systems. Likewise, the optimization framework

outlined above and the NEQM scheme as its illustratiié7]

example is a first step towards understanding the role
non-

equilibrium control in optimizing queue behavior an

El

(14]

jhss

gh

system performance. In order to do this rigorously, we will
need to understand the role of various complexity mitigatid'®]
approaches including

1)
2)
3)
4)

This

symmetry based reduction,

rigorous spatial averaging for the multi-user case,
numerical methods used for approximations of stochas
operators, and

(20]

tic

selection of a finite number of policies for tractablé 1

computation of optimal control.
is a focus of continuing investigations.

ACKNOWLEDGMENT

[22]

(23]

The authors would like to thank Uday Shanbhag and Umesh

Vaid

(1]

ya for helpful discussions.

REFERENCES

S. Shakkottai, R. Srikant, and S. P. Meyn, “Bounds on tireughput
of congestion controllers in the presence of feedback delagE/ACM
Transactions on Networkingvol. 11, no. 6, pp. 972-981, December
2003.

(24]

(25]

(26]

12

H. Han, C. Hollot, D. Towsley, and Y. Chait, “Synchronficm of tcp
flows in networks with small droptail buffers,” iRroc. of the 44th IEEE
Conference on Decision and Contr@eville, Spain, December 2005,
pp. 6762—-67.

A. Veres and M. Boda, “The chaotic nature of TCP congestiontrol,”
in Proc. IEEE Infocomvol. 3, March 2000, pp. 1715-1723.

F. Kelly, A. Maulloo, and D. Tan, “Rate control in communiizn
networks: Shadow prices, proportional fairness and stabildournal
of the Operational Research Societwl. 49, pp. 237-252, 1998.

F. P. Kelly, “Charging and rate control for elastic traffi European
Transactions on Telecommunicationsl. 8, pp. 33-37, January 1997.
T. Alpcan and T. Basar, “A utility-based congestion toh scheme for
Internet-style networks with delaylEEE Transactions on Networking
vol. 13, no. 6, pp. 1261-1274, December 2005.

T. Alpcan, T. Basar, and R. Tempo, “Randomized algoritharsstability
and robustness analysis of high-speed communication nedWoBEE
Transactions on Neural Networkwol. 16, no. 5, pp. 1229-1241,
September 2005.

T. Alpcan and T. Basar, “Global stability analysis of @md-to-end
congestion control scheme for general topology network$ wélay,”
in Proc. of the 42nd IEEE Conference on Decision and Contvdui,
HI, December 2003, pp. 1092 — 1097.

R. Srikant, The Mathematics of Internet Congestion Contsgr. Sys-
tems & Control: Foundations & Applications. Boston, MA: Biduser,
2004.

S. Deb and R. Srikant, “Global stability of congestioontrollers for
the Internet,”IEEE Transactions on Automatic Contralol. 48, no. 6,
pp. 1055-1060, June 2003.

C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “Analysiand
design of controllers for AQM routers supporting TCP flowHEE
Transactions on Automatic Contrgbp. 945-959, June 2002.

G. Vinnicombe, “On the stability of networks operatingCR-like
congestion control,” irProc. 15th IFAC World Congress on Automatic
Control, Barcelona, Spain, July 2002.

S. H. Low, F. Paganini, J. Wang, and J. C. Doyle, “Linetbsity of
TCP/RED and a scalable controComputer Networks Journabol. 43,
no. 5, pp. 633-647, December 2003.

R. Johari and D. Tan, “End-to-end congestion controltf@ Internet:
Delays and stability, JEEE/ACM Transactions on Networkingol. 9,
no. 6, pp. 818-832, December 2001.

S. Floyd and V. Jacobson, “Random early detection gayswfor
congestion avoidancelEEE/ACM Transactions on Networkingol. 1,
no. 4, pp. 397-413, August 1993.

S. Kunniyur and R. Srikant, “Analysis and design of amjtilze virtual
queue (AVQ) algorithm for active queue managementPiac. of ACM
SIGCOMM August 2001, pp. 123-134.

S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, “Rem: Activgqueue
management,/EEE Network vol. 15, no. 3, pp. 48-53, May/June 2001.
F. Wu-chang, K. Shin, D. Kandlur, and D. Saha, “The BLU&i&
queue management algorithm$EEE/ACM Transactions on Network-
ing, vol. 10, no. 4, pp. 513-528, August 2002.

S. Liu, T. Basar, and R. Srikant, “Exponential-RED: tahilizing
AQM scheme for low- and high-speed TCP protocolEEEE/ACM
Transactions on Networkingvol. 13, no. 5, pp. 1068-1081, October
2005.

S. Kunniyur and R. Srikant, “End-to-end congestion tcohschemes:
Utility functions, random losses and ECN marks,” iRroc. of
the |EEE Infocom 2000, pp. 1323-1332. [Online]. Available:
citeseer.nj.nec.com/358188.html

F. Baccelli, D. R. McDonald, and J. Reynier, “A mean-figitbdel
for multiple TCP connections through a buffer implementing RED
Performance Evaluatigrvol. 49, no. 1-4, pp. 77-97, 2002.

P. Ranjan, E. Abed, and R. J. La, “Nonlinear instalgifitin TCP-RED,”
IEEE/ACM Transactions on Networkingol. 12, no. 6, pp. 1079-1092,
December 2004.

P. Tinnakornsrisuphap and R. J. La, “Asymptotic behawibheteroge-
neous TCP flows and RED gatewal?EE/ACM Trans. on Networking
vol. 14, no. 1, pp. 108-120, February 2006.

R. Shorten, C. King, F. Wirth, and D. Leith, “ModellingCIP congestion
control dynamics in drop-tail environmentgutomatica vol. 43, no. 3,
pp. 441-449, March 2007.

J. Chung and M. Claypool, “Analysis of active queue mamagnt,” in
Proc. of 2nd IEEE International Symposium on Network Coinguand
Applications (NCA) Cambridge, Massachusetts, April 2003.

V. Firoiu and M. Borden, “A study of active queue managemfem
congestion control,” inProc. IEEE Infocom Tel Aviv, Israel, March
2000.



[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

D. Wischik, Queueing theory for TCRUniversity of lllinois at Urbana-
Champaign, 2006, 7th Intl. Conf. on Stochastic Networks.

T. Alpcan, P. G. Mehta, T. Basar, and U. Vaidya, “Cohtmf
non-equilibrium dynamics in communication networks,” Rroc. of
Conference of Decision and Contrdban Diego, CA, 2006. [Online].
Available: http://decision.csl.uiuc.edu/ alpcan

S. Deb and R. Srikant, “Rate-based versus queue-basettlsnof
congestion control,IEEE Transactions on Automatic Contyalol. 51,
no. 4, pp. 606-619, April 2006.

F. Baccelli, D. R. McDonald, and J. Reynier, “A mean-figitbdel
for multiple TCP connections through a buffer implementing RED
Performance Evaluatigrvol. 49, pp. 77-97, 2002.

K. B. Kim, “Design of feedback controls supporting TCPsbkd on the
state-space approachEZEE Transactions on Automatic Contrebl. 51,
no. 7, pp. 1086-99, July 2006.

E. Korkut, “Limit cycling in TCP Networks,” Master’s tisés, University
of Massachussets, Amherst, MA, 2006.

G. Raina, “Local bifurcation analysis of some dual costgs control
algorithms,” IEEE Transactions on Automatic Controlol. 50, no. 8,
pp. 1135-1146, August 2005.

G. Raina and D. Wischik, “Buffer sizes for large multipégs: TCP
queueing theory and instability analysis,” EuroNGI Conf. on Next
Generation Internet Network®005.

C. Li, G. Chen, X. Liao, and Y. Juebang, “Hopf bifurcatim an internet
congestion control modelChaos, Solitons Fractalssol. 19, pp. 853—
862, 2004.

X. F. Wang, “Controlling bifurcation and chaos in inmet congestion
control system,” inProcs. of the 4th World Congress on Intelligent
Control and AutomationShanghai, China, June 2002, pp. 573-576.
H. Yin, P. Wang, T. Alpcan, and P. G. Mehta, “Hopf bifuticea and
oscillation in communication networks with delays,” Rroc. of 17th
IFAC World Congress2008.

A. Lasota and M. C. MackeyChaos, Fractals, and Noise: Stochastic
Aspects of Dynamics New York: Springer-Verlag, 1994.

M. Dellnitz and O. Junge, “On the approximation of comatid
dynamical behavior,SIAM Journal on Numerical Analysisol. 36, pp.
491-515, 1999.

I. Mezic and A. Banaszuk, “Comparison of systems with campl
behavior,”Physica D vol. 197, pp. 101-133, 2004.

M. Dellnitz and O. JungeSet oriented numerical methods for dynamical
systems World Scientific, 2002, pp. 221-264.

G. Froyland,Nonlinear Dynamics and Statistics: Proceedings, Newton
Institute, Cambridge, 1998 Birkhauser, 2001, ch. Extracting dynamical
behaviour via Markov models, pp. 283-324.

K. Salamatian and S. Vaton, “Hidden Markov modeling fotwerk
communication channels3IGMETRICS Performance Evaluation Re-
view, vol. 29, no. 1, pp. 92-101, 2001.

R. Laalaoua, T. Czachorski, and T. Atmaca, “Markovian eiaef RED
mechanism,” ifProc. of the First IEEE/ACM Internat. Symp. on Cluster
Computing and the GridMay 2001, pp. 610-617.

P. G. Mehta, M. Hessel, and M. Dellnitz, “Symmetry of atb@s
and the Perron-Frobenius operatalgurnal of Difference Equations &
Applications September 2006.

UCB, LBNL, and VINT, “Network simulator ns (version 2),”
http://www.isi.edu/nsnam/ns/.

P. G. Mehta and U. Vaidya, “On stochastic analysis apghnes for
comparing dynamical systems,” iroc. of the 44th IEEE Conference
on Decision and ControlSeville, Spain, December 2005, pp. 8082-87.
M. Golubitsky and I. StewarfThe Symmetry Perspective. From Equilib-
rium to Chaos in Phase Space and Physical Spa8asel: Birkfauser,
2002.

H. K. Khalil, Nonlinear System<2nd ed. Upper Saddle River, NJ:
Prentice Hall, 1996.

M. Dellnitz, G. Froyland, and O. Junge, “The algorithmehind GAIO —
set oriented numerical methods for dynamical system<rgodic The-
ory, Analysis, and Efficient Simulation of Dynamical SysténFiedler,
Ed. Springer, 2001, pp. 145-174.

S. M. RossApplied Probability with Optimization Applications San
Fransisco, CA: holden-Day, Inc., 1970.

L. Rabiner, “A tutorial on hidden Markov models and sééetappli-
cations in speech recognition,” iRroc. of the IEEE vol. 77, no. 2,
February 1989, pp. 257-286.

J. Navratil and R. L. Cottrell. Abing. [Online]. Avaitde: http://www-
iepm.slac.stanford.edu/tools/abing/

13



