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Abstract— We present a non-equilibrium analysis and control
approach for the Active Queue Management (AQM) problem
in communication networks. Using simplified fluid models, we
carry out a bifurcation study of the complex dynamic queue
behavior to show that non-equilibrium methods are essential for
analysis and optimization in the AQM problem. We investigate an
ergodic theoretic framework for stochastic modeling of the non-
equilibrium behavior in deterministic models and use it to iden-
tify parameters of a fluid model from packet level simulations.
For computational tractability, we use set-oriented numerical
methods to construct finite-dimensional Markov models including
control Markov chains and hidden Markov models. Subsequently,
we develop and analyze an example AQM algorithm using a
Markov Decision Process (MDP) based control framework. The
control scheme developed is optimal with respect to a reward
function defined over the queue size and aggregate flow rate.
We implement and simulate our illustrative AQM algorithm in
the ns-2 network simulator. The results obtained confirm the
theoretical analysis and exhibit promising performance when
compared with well-known alternative schemes under persistent
non-equilibrium queue behavior.

I. I NTRODUCTION

Communication networks such as the Internet exhibit a
wide variety of complex dynamic behavior. Examples of such
complex behavior include user flow rate oscillations in the
presence of delays [1], dynamic synchronization of the flows
passing through the same bottleneck link [2], and chaotic
behavior of user flows and queues at the routers [3].

The control of complex networks has been a focus of much
recent research interest. Much of this line of research, however,
has focused on a single-point equilibrium solution and analysis
of its stability properties. We note Kelly’s framework for
network capacity optimization [4], [5] and game theoretic ap-
proaches for network control and optimization [6]–[8]. Each of
these approaches lead to a static optimal equilibrium solution.
Lyapunov functions [9], [10] and linear control theoretic meth-
ods [11]–[14] are then used to ensure its dynamic stability.

This paper is concerned with the analysis and control of
complex behavior, referred to as non-equilibrium dynamics,
in communication networks. Neither static optimization nor
linear control theoretic approaches are suitable for analysis or

0An earlier version of this paper was presented at the 7th IFACSymposium
on Nonlinear Control Systems (NOLCOS 2007, Pretoria, South Africa, August
22-24, 2007).

1Deutsche Telekom Laboratories, Ernst-Reuter-Platz 7, 10587 Germany.
2Dept. of Mechanical Science & Engineering and the Coordinated Science

Laboratory, University of Illinois, 1206 W. Green Street, Urbana IL 61801.
3Coordinated Science Laboratory, University of Illinois, 1308 West Main

Street, Urbana IL 61801.

control in non-equilibrium settings. For illustrative purposes,
we consider here the Active Queue Management (AQM)
problem. The AQM provides a mechanism by which a link
(router) sends advanced congestion notification to the users.
In particular, an AQM algorithm uses the queue length in-
formation to either mark or drop packets. The latter is the
case in the widely-used droptail algorithm. Random Early
Detection (RED) [15] and its variations such as AVQ [16],
REM [17], BLUE [18], and E-RED [19] are other well-
known examples of AQM algorithms [9], [20] with different
characteristics, which have been proposed and studied by the
research community.

In [11], a fluid-flow model of TCP interacting with AQM
schemes is linearized around the equilibrium. Then, the AQM
analysis and design is formulated as a linear control problem
whose stability properties are investigated. Linear stability
properties of networks with TCP-RED interaction has been
studied in [13]. A mean-field model based on N-particle
Markov process and for the congestion windows of multi-
ple TCP sources multiplexed through a buffer implementing
RED has been presented in [21]. Through simulation studies
and an asymptotic analysis the applicability of the model is
established. In addition, stability and robustness properties
of the resulting system with respect to time delays have
been identified. A nonlinear and bifurcation analysis of RED
on a TCP network has been conducted in [22] where a
discrete-time dynamical model is used to analyze the TCP-
RED operating point and its stability with respect to vari-
ous RED controller and system parameters. In a subsequent
study [23], a stochastic model of a bottleneck RED gateway
under a large number of heterogeneous TCP flows has been
proposed and the asymptotic behavior of the system has been
investigated. More recently, the interaction between additive-
increase multiplicative-decrease (AIMD) congestion control
and droptail AQM schemes is investigated through models
utilizing nonnegative matrix theory [24].

Although much of control-oriented analysis and design has
appeared within linear settings, there is significant evidence in
literature for complex and chaotic queue behavior in Internet-
type networks and their models [3], [22], [25], [26]. Non-
equilibrium fluctuations in queue behavior has been observed
both experimentally and numerically [25], [27]. For appropri-
ate parameter values, the simplified fluid models also exhibit
persistent non-equilibrium behavior [3], [22], [28]. The non-
equilibrium behavior in queues may be due to random noise or
could arise as self-excited “chaotic oscillations” and there are
suggestions for both in the literature [27]. Papers concerned
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with deriving mean or limit models [23], [29], [30], obtaining
AQM performance with linear control methods [11], [31], or
with carrying out describing function based analysis [32] typi-
cally assume a random noise. The papers concerned with local
instability/bifurcation analysis [22], [33]–[36], and (global)
numerical investigations [1], [3], [22] using deterministic fluid
models show these oscillations as self-excited. With simple
fluid models, analytical methods from bifurcation theory have
been used to show that these self-excited oscillations can arise
as a result of supercritical Hopf bifurcation [33], [35], [37] and
of period doubling and border-collision bifurcations [22].

Even though the methods of this paper are relevant to
both noise-driven and self-excited cases, we are primarily
motivated by the analysis and control issues for the latter
case, i.e., where the non-equilibrium queue behavior arises
as a result of nonlinear dynamics and not random noise.
In such a case, there is a gap between available methods
that focus on static optimization, and simulations that show
persistent non-equilibrium behavior that does not need any
noise. From a practical viewpoint, explicit analysis and control
of non-equilibrium behavior could play an important role in
the performance of the overall congestion control scheme.

In the remainder of this section, we discuss the main
elements of the proposed approach. We represent, for mod-
eling and control, the dynamic variables by their stochastic
counterparts. Even though the models are deterministic, the
analysis and control approach is stochastic. This enables us
to go beyond the frameworks based on a single equilibrium-
point. The modeling approach is based upon the methods of
Ergodic theory for representing complex behavior in nonlinear
dynamical systems. In particular, we replace the dynamical
models by their stochastic counterparts - the so-called Perron-
Frobenius (P-F) operator [38]–[40]. While, the dynamical
model propagates the initial condition, the Perron-Frobenius
operator propagates uncertainty in initial condition. Themain
advantage is that it is generally easier to represent the complex
asymptotic dynamic behavior as invariant probability measures
of the P-F operator. In the context of this paper, we do this to
represent and model the queue behavior.

For computational purposes, we use set-oriented numerical
methods for discretization of the dynamical systems; cf. [41],
[42]. Our goal is to use these simulation based methods to
construct finite-dimensional Markov chains from the dynamic
model. These Markov chains are then used to carry out,
numerically, dynamic analysis and control design. A somewhat
different Markov modeling of communication networks has
additionally been considered in [43], [44]. In [43], a Hidden
Markov Model for a communication channel has been studied
where the channel switches between different states. Each
state corresponds to the probability that a packet sent over
the channel will be lost. In [44], a Markovian Model for
the RED algorithm has been proposed where the states are
composed of the (average) queue size and some flags. Using
this model, the impact of RED on the mean delay and
loss rate has been analyzed. The basic idea of our work
– use of stochastic approaches for analysis and control of
non-equilibrium dynamic behavior in deterministic network
settings – is very different in nature and novel.

The stochastic modeling approach we take enables us to
carry out:
Bifurcation analysis: Although the methods of local bifur-
cation theory can be used to analyze the instability and
(local) onset of bifurcation as in [33], [35], these methods
are less relevant to the AQM problem because of the global
nature of the queue oscillation and presence of discontinuities
such as saturations in these models. For instance, the chaotic
oscillations have been typically studied using numerical simu-
lations as in [3], [22]. Stochastic methods, on the other hand,
enable analysis of the asymptotic chaotic dynamics in terms
of invariant measures [38]. Bifurcations in chaotic regimecan
be understood via analysis of the spectrum of the P-F operator
or the support of the invariant measure [45]. In particular,we
use these results to understand qualitative changes in queue
behavior.
Identification of the fluid model parameters from packet
level ns2 [46] simulations: In the non-equilibrium regime, the
results of both the fluid-model as well as the ns-2 simulation
display rich time-series behavior. As a result, the question of
how well fluid models approximate the reality or even ns-2
simulations is not straight-forward [47]. We validate the fluid-
approximation based results with the ones of ns-2 simulations
by comparing the two invariant measures using theL1-norm
as metric. We use this comparison to justify the choice of the
parameters for the fluid model.
Control synthesis for shaping non-equilibrium behavior: We
propose a Markov Decision Process (MDP) based framework
for optimization of the asymptotic dynamics. Even though
the control framework considered is quite general, we use
without any loss of generality an AQM control structure
similar to RED for the purposes of this paper. We pose and
solve the control problem as a MDP where the full state –
user and queue behavior – is observed, and as control of
Hidden Markov Models (HMMs) where only the queue size
is observed. Both the analysis and control are verified using
simulations in MATLAB.

The outline for the rest of the paper is as follows: In
Section II, a well-known network model of user and queue
behavior along with an equilibrium and stability analysis of
the Droptail scheme is presented. In Section III, a stochastic
modeling of the network together with its discrete approxi-
mation as finite-dimensional Markov models is described and
used to carry out bifurcation analysis as well as identification
of network model parameters using the ns-2 simulations. In
Section V, an MDP-based framework for optimization and
control of these models is summarized. The Matlab and ns-
2 simulation results demonstrating control of non-equilibrium
behavior under the AQM algorithm developed are described
in Section VI. The paper ends with the concluding remarks of
Section VII.

II. D ETERMINISTIC FLUID MODEL

A. Single Bottleneck Link with Symmetric Users

We consider a single bottleneck link of a network with
fixed capacityC shared byM users. Instead of conducting a
packet level analysis of the network, we adopt a network model
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based on fluid approximations [6], [9]. Each user is associated
with a unique connection for simplicity and transmits with
a nonnegative flow ratexi over this bottleneck link. For
xi ∈ R

+ .
= [0,∞), theith user is assumed to follow a transfer

control protocol (TCP)-like additive-increase multiplicative-
decrease flow control scheme,

ẋi(t) = κ

(

1

d
− βxi(t)

2p(t)

)

, (1)

where0 ≤ p ≤ 1 is the observed rate of marking (or depending
on the implementation, dropping) of its packets,κ denotes the
step-size, andd and β denote the (symmetric) rate-increase
and decrease parameters, respectively. For a prescribedp(t),
the ODE (1) has a well-defined solution inR+ for all time
because the right hand side is Lipschitz inxi and R

+ is a
positively invariant set with respect to (1). This is because
ẋi(t) = κ

d
> 0 at the boundaryxi = 0. We use the underline

notationx
.
= (x1, . . . , xM ) to denote the vector of user flow

rates, wherex ∈ R
+M .

The packet marking occurs at the link whose dynamics are
next described. If the aggregate sending rate of users exceeds
the capacityC of the link, then the arriving packets are queued
in the bufferq of the link. The non-negative queue size evolves
according to the ODE

q̇(t) =











∑M
i=1 xi(t) − C q ∈ (0, B),

min(0,
∑M

i=1 xi(t) − C) q = B,

max(0,
∑M

i=1 xi(t) − C) q = 0.

(2)

where we assume a maximum buffer size ofB at which
the queue saturates and any incoming packet after this point
is dropped; cf. [11].p(·) in (1) is set by the AQM control
and takes the general formp = F (q). As an example,
packet marking for the widely used droptail AQM scheme
is described by

p =

{

0 , if q < B

1 , otherwise.
(3)

It is the objective of this paper to discuss questions pertaining
to 1) (non-equilibrium) dynamic analysis for a given AQM
schemeF and 2) control synthesis of the optimalF .

With a large number of usersM , a detailed non-equilibrium
analysis of the multi-user model (1) is infeasible. In order
to simplify the analysis, we note that the equations are
equivariant with respect to the permutation group with the
group actionxi → xj for i, j ∈ {1, . . . ,M}. As a result of
this symmetry, the linear subspace

S = {x ∈ R
+M : xi = x1} (4)

is a fixed-point space; cf., [48]. We will refer toS as the
synchrony subspace. In particular, the subspaceS is positively
invariant with respect to dynamics of (1). In the following
section, we show that the subspaceS is also stable with respect
to arbitrary initial conditions of user flow rate, i.e., the user
flow rates synchronize after a period of transients. As a result,
we will analyze the non-equilibrium dynamics of (1)-(2) for
only the symmetric fixed-point space where all the users have
the same flow-rate.

B. Synchronization to symmetric fixed-point space

Theorem II.1. Consider the multi-user setup of (1)-(2), where
p = F (q) andF satisfies the condition thatF (B) > 0 then the
synchrony subspaceS is asymptotically stable, i.e., ast → ∞,
xi(t) = x1(t) for all i = 1, . . . ,M .

Proof. To show asymptotic stability, we use the Lasalle’s
invariance theorem [49]. The steps in the proof are 1) we
propose a Lyapunov functionV (x), 2) setE

.
= {x ∈ Ω ⊂

R
+M |V̇ (t) = 0}, whereΩ is a compact positively invariant

with respect to (1), and 3) show that the largest invariant set
in E, denoted byM , lies in S ∩Ω. We outline the three steps
below:

1) The Lyapunov function is taken to be

V (x) =
1

2

M
∑

i=2

(xi − x1)
2. (5)

Using (1), the time derivative of (5) is

V̇ (x) = −κβ

M
∑

i=2

(xi − x1)
2 · (xi + x1) · p. (6)

Sincep ∈ [0, 1], V̇ (t) ≤ 0.
2) Set

Ω =

{

x ∈ R
+M : xi ≤ max

(

C + B,
1√
βd

)}

. (7)

To see thatΩ is positively invariant, note thaṫxi ≤ 0

wheneverxi > max
(

C + B, 1√
βd

)

. This shows that
the trajectories are bounded within setΩ and thus there
exists a (largest such) compact invariant setM that
contains all the limit points.

3) Finally, we show thatM ⊂ S ∩ Ω. Using (6), first note
that if x ∈ E then either (a)xi = x1, or (b)x1 = xi = 0
for all i = 2,M , or (c)p = 0. We consider case (c) first.
Supposep ≡ 0 over a trajectory then using (1),

xi(t) = xi(0) +
κ

d
t, (8)

and there exists a finite timeT < d(C+1)
κM

+B such that
q(T ) = B and p = F (B) > 0. As a result, any set of
points with p ≡ 0 is not an invariant set and the case
(a) or (b) applies. In both these cases,x ∈ S. SinceS
is a fixed-point space, it contains its invariant set and
M ⊂ S ∩ Ω as desired.

We denote the symmetric user flow rate asx. In the fixed-
point space, the system dynamics are

ẋ(t) = κ

(

1

d
− βx(t)2p(t)

)

,

q̇(t) =







Mx(t) − C q ∈ (0, B),
min(0,Mx(t) − C) q = B,
max(0,Mx(t) − C) q = 0.

(9)

The number of the usersM is now a system parameter and we
will investigate bifurcations in dynamic behavior with respect
to this and other parameters. We note that the important effect
of delay has been ignored in this model.
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C. Equilibrium and Stability Analysis of Droptail

In this section, we carry out a preliminary stability and
bifurcation analysis of the multi user fluid model (1)-(2) with
a droptail AQM (3). The analysis is analytically tractable
because the equilibrium dynamics arise entirely in the fixed-
point space. The result is summarized with the aid of the
following Theorem:

Theorem II.2. Consider the model (1)-(2) with a droptail
AQM (3). Using β∗ .

= 1
d

(

C
M

)−2
to represent the critical

value of β, we have the following conclusion regarding the
equilibrium solution:

1) For values ofβ < β∗, there exists a unique equilibrium
solution with user flow ratesxi = x̄

.
= 1√

dβ
and

saturated value of queueq = q̄
.
= B. This equilibrium

solution, denoted as̄x, lies in the subspaceS and is
stable.

2) For values ofβ > β∗, no equilibrium solution can exist.
The asymptotic dynamics are non-equilibrium but lie in
the fixed-point spaceS.

Proof. For an equilibrium solution to exist, there can only be
two possibilities: eitherp ≡ 0 or p ≡ 1. The first possibility
is trivially ruled out because in the absence of feedback from
the router, the user flow ratexi will increase without bound.
The latter case is more interesting. Supposep ≡ 1. Then, the
only possible equilibrium of (1) – if it exists – is given by

xi = x̄ = 1/
√

dβ (10)

and is symmetric. Substituting this solution in (9) leads totwo
possible cases:(a) if x̄ > C

M
thenq increases and saturates to

Qmax. According to droptail, this then leads top = 1 validating
our assumption. This equilibrium point is valid, and provided
it is stable, can be observed within a simulation.(b) If x̄ < C

M

thenq decreases and empties to0. With droptail, this then leads
to p = 0 thereby invalidating our assumption and resulting in
no equilibrium.

Now, the conditionx̄ > C
M

is equivalent toβ < β∗. The
argument above thus shows that an equilibrium solution cannot
exist for the range of valuesβ > β∗. To complete the proof,
we note that the equilibrium̄x > C

M
is locally stable due to

the stability of its linearization:

˙δx = −2κ

√

β

d
δx,

δ̇q = 0. (11)

This theorem shows that for sufficiently small feedback gain
β, the queue is full (regardless ofB) and the packets are
always being dropped. Such an equilibrium, even though it
is stable, is clearly not desirable. As the feedback gainβ is
increased, one reaches the critical value

β∗ =
1

d

(

C

M

)−2

(12)

beyond which the assumptionp ≡ 1 is violated. An equilib-
rium solution cannot exist for the range of valuesβ > β∗.

These results are visualized in Figure 1: either an equilibrium
solution does not exist or when it exists, the user flow rate is
greater than capacity and the queue is always full.
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Fig. 1. Bifurcation diagram for the droptail AQM.

For the system (9) under the droptail AQM scheme the
queue begins “oscillating” about its upper-limitB for values of
β greater than the critical value. Furthermore, even the small
oscillations at the onset are not periodic. Figure 2(a) depicts
an typical time-series of this system and the Figure 2(b) shows
the largest incursion of these oscillations as a function ofthe
parameterβ. As observed in Figure 2(a), the queue behavior
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Fig. 2. (a) Time-series of incipient oscillations forβ = β∗+ and (b) a
numerically determined bifurcation diagram of the non-equilibrium queue
behavior.

is both complex (non-periodic) and global in the phase space.
The non-periodic nature of oscillations arise because of the
discontinuity inp. However, even with a somewhat smoother
version of the functionp(·), the local methods of bifurcation
theory are perhaps not best-suited for global analysis with
large queue oscillations.
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TABLE I

MODEL PARAMETERS

Link capacity C = 1000
# of users M = 10, M∗ = 25
Queue bounds Qmin = 0, Qmax = 100
User parameters κ = 0.05, d = 0.01, β = 0.0625

The results obtained from the fluid model also shed light to
more realistic simulations such as the ones in ns-2. In the TCP,
the “parameterβ” is implicit and fixed. Using (12), the critical
behavior in ns-2 simulations arises as a function of eitherC or
M . In particular, with a fixedC there exists a critical value of
M , denoted byM∗, such that the queue saturates forM > M∗

and oscillates forM < M∗.

D. Parameter Identification

For the fluid-approximation (9), the increase-rate parameter
κ
d

and the decrease-rate parameterκ ·β are identified to match
the ns-2 simulations. Specifically,κ

d
is identified from the

average slope of the TCP additive increase phase. In order
to identify the parameterκβ, multiple ns-2 simulations for
different number of usersM were carried out. From these
simulations,M∗ was determined as the critical number of
users for which the queue starts to oscillate. The queue is
saturated forM > M∗ and oscillates forM < M∗. Using (12)
the parameter

κβ =
κ

d

(

C

M∗

)−2

. (13)

Figure 3 depicts the probability distributions (histogram)
obtained from the ns2 time-series data (9). Table II-D depicts
the identified nominal model parameters for the fluid approx-
imation (9). For analysis and control synthesis, we will use
M = 10 number of users. Note that this corresponds to a
non-equilibrium queue behavior with droptail AQM.

Before presenting the analysis, we make a few remarks
regarding approximations implicit in this identification.With
ns2 simulations, the time-series data shows several features
which are not captured by fluid approximation models. Vis-
a-vis parameter identification, two approximations had to be
made. The first approximation was in the determination of
the criticalM∗. ns2 simulations show a large range of values
of M with small oscillations about the saturated queue level.
To accommodate this,M∗ was identified to be the number
of users at the onset of “larger” oscillations; see Fig. 3. The
second and more significant approximation was in ignoring the
delay. Both stochastic and spectral analysis of the time-series
data from ns2 simulations indicate the important effect of
delay. Although, the effect of delay was found to be important
in establishing a reasonable match to ns2 simulations, it will
not be considered in this paper.

III. STOCHASTIC MODEL AND BIFURCATION ANALYSIS

For analysis and control design, we employ stochastic
(Markovian) representations of non-equilibrium dynamics.
These representations aid the analysis of asymptotic aspects
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Fig. 3. Bifurcation diagram in terms of the invariant measure:ns-2 dynamics
as the parameterM is increased with the droptail AQM.

of these dynamics in terms of invariant measures and their
numerical approximations. We begin by considering the dy-
namical systemT : X × Q → R

+2 obtained by sampling the
solutions of the ODE. In particular, denoteφ(t;x0, q0) to be
the solution operator for the fluid approximation ODE (9) and
setT (x0, q0) = φ(∆t;x0, q0). The sampling time∆t is taken
to be of the same order as the delay and(x0, q0) ∈ X × Q
denote the initial condition. The AQM policy will be tested
on the sampled data system with sampling time of∆T . This
policy is consistent with the optimization problem that will
be posed and solved in the following section. In effect, this
reflects the nature of AQM where a time-period of order round
trip time is used for the AQM policy update.X ⊂ R

+ denotes
the compact state-space forx(·), Q = [0, B] ⊂ R

+ denotes
the compact state-space forq(·) andS

.
= X × Q.

In stochastic settings, the basic object of interest is the
Perron-Frobenius (P-F) operatorP corresponding to the dy-
namical systemT . It is given byP[ν](A) = ν(T−1(A)), where
A ⊂ B(S), the Borel σ-algebra ofS and ν ∈ M(S), the
measure space onS. T−1(A) denotes the pre-image set, i.e.,
T−1(A)

.
= {x ∈ S : T (x) ∈ A}. While the dynamical system

T describes the nonlinear evolution of an initial condition,the
P-F operatorP describes the linear evolution of the uncer-
tainty (probability density function) in initial conditions. The
advantage of using a stochastic framework is that asymptotic
dynamics ofT can be interpreted as invariant measures of the
stochastic operatorP. The invariant measure is a probability
measure that is also a fixed-point of the P-F operatorP, i.e.,
Pν1 = 1 · ν1. From Ergodic theory, an invariant measure is
always known to exist under the assumption that the mapping
T : S → S is at least continuous andS is compact; cf., [38].

The set-oriented numerical methods have recently been
employed for constructing efficient finite-dimensional approx-
imations of the P-F operator; cf. [41], [42]. The approximation
arises as a Markov matrix defined with respect to a finite
partition SL

.
= {D1, · · · ,DL} of the phase spaceS. Instead

of a Borelσ-algebraB(S), consider now aσ-algebra of the all
possible subsets ofSL. A real-valued measureνj is defined by
ascribing to each elementDj a real number. Thus, one identi-
fies the associated measure space with a finite-dimensional real
vector spaceRL. Using Galerkin approximations, the discrete
P-F approximation arises as a matrix

Pij =
m(T−1(Dj) ∩ Di)

m(Di)
(14)
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on the “measure space”RL; m is the Lebesgue measure [42],
[47]. The resulting matrix is non-negative and ifT : Di →
S,

∑L
j=1 Pij = 1, i.e., P is a Markov or a row-stochastic

matrix. P is interpreted as an pproximation ofP obtained by
considering a certain random perturbation of the dynamical
systemT . P converges toP in L2 as the partition gets finer
and finer [39].

The partitionSL for the stochastic approximation of the
network model is constructed by taking a quantization for
the user flow-rates (inX) and queue size (inQ) between
a lower and upper bound. The lower bounds are taken to
be 0 because of the non-negativity of these quantities. The
upper bounds are taken to be suitable multiples of link
capacity and maximum queue buffer size. On account of
computational constraints, we choseO(10) quantization levels
for the user flow rate and the bottleneck link queue size. The
two quantized partitions are denoted asX = [X1, . . . ,X22]
and Q = [Q1, . . . , Q22] and the partition sizeL = 484.
We denoteSL

.
= X × Q, where the statess ∈ SL are in-

dexed as{(X1, Q1), (X1, Q2), . . . , (X2, Q1), (X2, Q2), . . .}.
Table II tabulates the quantization values used for constructing
the cells inX and Q. The sub-scriptL is dropped for the
remainder of the paper to simplify the notation.

TABLE II

QUANTIZATION OF STATES (X AND Q)

X1 0 − 0.05C/M Q1 0 − 5
X2 0.05C/M − 0.1C/M Q2 5 − 10
...

...
...

...
X20 0.95C/M − C/M Q20 95 − 100
X21 C/M − 1.05C/M Q21 100 − 105
X22 1.05C/M − 1.1C/M Q22 105 − 110

For the network dynamical system (9), a Markov Model
(MM) consists of a Markov chain with states inS and
transition probabilities (entries ofP in Eq. (14)) between these
states. The entryPij denotes the transition probability of the
next state being inDj conditioned on the current state being in
Di. The state evolution associated with the nonlinear dynami-
cal systemT (Eq. (9)) is replaced its stochastic approximation,

ν(n + 1) = ν(n)P, (15)

whereν(·) ∈ R
L is the row probability vector.

One approach for numerically approximatingP in Eq. (14)
is to use a Monte Carlo algorithm with several short term
simulations using the dynamical systemT . Here,N uniformly
distributed random samplesnin

i = (x, q)i i = 1, . . . , N in S
are used as initial conditions for the dynamical systemT in
Eq. (9). Denotenout

i = (x, q)i i = 1, . . . , N , as the image of
these points after one iterate of the dynamical system. After
identifying the input and output samplesnin and nout with
the statess ∈ S of the MM, the transition probability from
statei to j is estimated as

P̂ij =

∑

[k:nout

k
∈j]

∑

[l:nin

l
∈i]

,

where
∑

[k:nout

k
∈j] denotes the number of pointsk such that

nout
k ∈ j. The algorithms for constructing these approxi-

mations and their numerical convergence properties appear
in [50]. As one takes finer partitions, the invariant measure
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Fig. 4. Eigenvalues of the Markov chain for 10 users (M = 10).

of Markov matrix P converges to a weak limitν∗ that
approximates the invariant measure of the P-F operatorP;
see Theorem 3.1 in [42]. In typical situations, the support of
the invariant measure is the attractor set. Thus, the stochastic
MM provides a description of the original dynamical system’s
asymptotic behavior.

Figure 4 depicts the spectrum of the Markov chainP . There
is a unique eigenvalue at1 and the corresponding eigenvector
gives the invariant measure, denoted asν1. Figure 5 compares
this invariant measure with the ergodic averages computed
using time-domain simulation; cf., [47]. As shown in the
figure, the MM is fairly accurate in describing the asymptotic
behavior of the system in terms of probabilities.
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The presence of complex spectrum close to the unit circle



7

1
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3
0.2

0.1

1
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3
0.2

0.1

5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

80

90

100

0.1

0.2
0.3

0.4

0.5

0.6

0.7

0.8

0.9
1

1 Invariant Measures from Markov

(b)

Q
ue

ue
 S

iz
e

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

80

90

100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Invariant Measures from Time−average

M − number of users

Q
ue

ue
 S

iz
e

Fig. 6. Bifurcation diagram in terms of the invariant measure:(left) MM
dynamics, (right) the time-averaged dynamics as the parameterM is increased
with the droptail AQM.

also suggests oscillations in the asymptotic dynamics; cf., [39],
[40], [47]. This is indeed consistent with the results of the
time-domain simulation which exhibit oscillations in the non-
equilibrium regime. A comparison between the frequency
obtained using spectrum of Markov chain and the Discrete
Fourier transform (DFT) of time-series data is summarized as
part of the bifurcation analysis.

Having obtained the Markov model, we carried out a
bifurcation analysis with the number of usersM serving as a
parameter. At the critical valueM∗, the support of the invariant
measurēµ changes in a qualitative sense. Figure 6 compares
the invariant measurēµ for the parameterized MM with the
ergodic averages computed using time-domain simulations.
The time-domain results with both the ns-2 simulator and the
fluid approximation are given. For quantitative comparison,
Figure 7 depicts theL1 distance been the invariant measure
computed using the MM and the ergodic average with time-
series data. TheL1 norm between two distributionspts (with
time-series) andpmm (with Markov model) is given in Fig. 7.
It is defined as

‖pts − pmm‖1 :=
1

2

∑

i

|pts(i) − pmm(i)|. (16)

TheL1-error is small indicating that the MM is fairly accurate
in capturing the asymptotic behavior with the time-domain
simulation over a range of values ofM . Finally, Figure 8
compares the frequencies of the oscillations obtained from
Markov model and the DFT of the time-series data. We refer
the reader to our paper [47] for details on the spectral analysis
for chaotic systems.

IV. CONTROL MARKOV CHAINS AND HMM S

Given the user and queue dynamical system in (9), we
define the AQM control structure using ten separate packet
marking (or dropping) schemespu, u = 1, . . . , 10. U denotes
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the set with these finite number of control schemes, i.e.,
U = {pu}10

u=1. These schemes, implemented at the bottleneck
link, set the value ofp(·) = pu in the user equation. The AQM
schemep1 corresponds to well-known “droptail” behavior
whereas others can be interpreted as variants of RED, where
the packet marking probability is constant instead of linearly
increasing.

The queued packets are not marked (corresponds topu = 0),
if the queue size is less than a certain lower thresholdQmin.
The packets are always marked if the queue size is larger than
a upper thresholdQmax (corresponds topu = 1). Qmax is
set to the buffer sizeB. If the current queue size is between
the two thresholds (Qmin < q < Qmax), the packets are
marked according topu = (u − 1) × 0.1 for u = 1, . . . , 10.
Table III summarizes the packet marking schemes, where
Qmin = 0 and Qmax = 100. The number and properties
of are chosen for simplicity and illustrative purposes. Our
analysis can be extended to a more complex control structure
in a straightforward manner.

The AQM control structure modifies the dynamical sys-
tem (9) and leads to control Markov chainsPu, where the
superscriptu corresponds to the choice of the (fixed) control
schemepu. The elementPu

ij denotes the probability of the next
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TABLE III

CONTROL POLICIES

Policy q ≤ Qmin Qmin < q < Qmax q ≥ Qmax

p1 0 0 1
pu(u = 2 − 10) 0 (u − 1) × 0.1 1

state being inDj conditioned on the current state being inDi

and control beingpu. The control Markov chain corresponds
to the approximation of the Perron-Frobenius operator of the
control dynamical system and as such is a straightforward
extension of the discussion in Section II.

It is not realistic to assume knowledge of both the user flow
rates and the queue sizes for control design. At the bottleneck
link, one would typically know only the queue size and not the
the user flow rates. Therefore, we consider a hidden Markov
model (HMM) for describing the dynamical system’s behavior
in the presence of partial observations. For the network model,
only the set of queue statesQ is assumed to be observed. The
emission matrixE maps the set of statesS of the MM to the
set of queue statesQ and has the structure

E :=











1 0 · · · 0 1 0 · · ·
0 1 0 1 · · ·
...

. . .
...

...
. ..

0 0 · · · 1 0 0 · · ·











Q×X

,

whereEij denotes the probability of the current queue in cell
Qi conditioned on the state in cellDj .

Remark IV.1. Note that all three of the AQM schemes in
Section IV do not mark (or drop) packets if the queue size
is less thanQmin.

V. OPTIMIZATION , CONTROL AND ESTIMATION

Now that we have a Markov model on a finite state space
S with finitely many control actionsU , we pose the control
problem as a Markov Decision Process (MDP). In particular,
given a states ∈ S, we would like to determine the optimal
policy s → π∗(s) such that a certain expected reward is
maximized over a time horizon. The policy refers to any rule
for choosing control. For optimization purposes, the reward
per stageg(s) is defined over the states inS and is depicted
in Figure 9. It is chosen to be the largest for a queue size
between10 and 20. The expectation is that a positive but
moderate queue size will ensure maximum capacity utilization
while preventing large queue fluctuations and resultant buffer
overflows. For large values of queue, the states with large
values of user flow rate are penalized more than those with
smaller values. For very small queue size, lower values of user
flow rate are penalized.

Assuming reward per stageg(s) and a policyπ, the infinite
horizon discounted reward is given by

Jπ(s) := Eπ

[ ∞
∑

n=0

αng(s(n))|s(0) = s

]

,

whereEπ represents the conditional expectation given that the
policy π is employed, andα < 1 is the discount factor. By
choosing the discount factor lower, the resulting policiescan
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Fig. 9. The reward function onX ×Q.

be made more myopic (i.e. heavily discounting future rewards)
which can be useful when the system at hand is not fully
stationary. The optimal reward function is defined by

Jα(s) := max
π

Jπ(s), s ∈ S.

A policy π∗(s) is optimal if Jπ∗(s) = Jα(s) for all statess.
Form the theory of MDP (see Chapter 7 in [51]), the optimal
reward function satisfies the Bellman operator equation

Jα(s) = max
u







g(s) + α
∑

j

Pu
ijJα(j)







, (17)

and the optimal policyπ∗ : S → U is a stationary policy, i.e.,
the control at timen depends only upon the state at timen.

For finite state space, as in our case, there are numerous
approaches for obtaining the optimal stationary policy. Inthe
paper, we choose thevalue iteration algorithm where the
solution to (17) is obtained using the recursion

Jk+1(s) = max
u







g(s) + α
∑

j

Pu
ijJk(j)







. (18)

This recursion leads to the optimal stationary policyπ∗.
Using value ofα = 0.3, the reward functiong(s) given in

Fig. 9 and the choice of discrete control schemes in Table III,
we used (18) to synthesize the optimal stationary AQM policy
solutionπ∗ on X ×Q. Figure 10 depicts this policy referred
to as NEQM (Non-Equilibrium Queue Management) in the
remainder of this paper. We note that the NEQM policy, while
being more general, is not very different from the existing
AQM schemes such as RED in terms of dependence ofp(·) on
queue size. In particular, the policy drops (or marks) packets
aggressively for larger queue sizes. As such, it provides an
optimization-based explanation of why RED is a reasonable
AQM scheme in practice.

Using the NEQM policyµ∗, we also computed the invariant
probability measures of the controlled Markov matrixPµ∗ for
user flow rates (inX ) and queue size (inQ). These measures,
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Fig. 10. The optimal policyµ∗ on X ×Q obtained by solving the MDP.

shown in Figure 11, suggest the possibility of non-equilibrium
queue dynamics. This was indeed verified using numerical
simulations as discussed in the following section.
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Fig. 11. The asymptotic stationary probabilities of the states in (top)X (flow
rate) and (bottom)Q (queue size) under optimal AQM control obtained from
MM.

Before describing the numerical simulations, we briefly
discuss the implementation of NEQM policy for the practical
situation where the user flow rate is hidden. For such a
case, we applied the Viterbi algorithm [52] to estimate the
state (in S) from the queue time-series. In particular, given
the HMM consisting ofE, Pu (u = 1, . . . , 10) and given
a sequence ofm observations at the bottleneck linko :=
[o1, . . . , om], oi ∈ Q, we estimate the single best state
sequence (path)̂s = [ŝ1, . . . , ŝm] of the real state sequence
s = [s1, . . . , sm], s ∈ S. The chosen estimation criterion
was to maximizeP (ŝ | o, Pu, E) given the observationso.
Figure 12 depicts the typical estimation results obtained with
a window based implementation of the Viterbi algorithm.

VI. SIMULATIONS

A. Numerical Analysis in Matlab

We carried out Matlab based simulations with multi-user
fluid approximation models and parameter values consistent
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Fig. 12. Estimated̂s and actual system statess ∈ S = X ×Q under AQM
control.

with the preceding analysis. Apart from the symmetric user
case, we also simulated a case with asymmetric users in
order to test the robustness of the AQM scheme. Table IV
summarizes the simulation parameters for both the symmetric
and the asymmetric user cases.

TABLE IV

SIMULATION MODEL PARAMETERS

Link capacity C = 1000
# of users M = 10
Queue bounds qmin = 10, qmax = 100
Symmetric user parameters κ = 0.05, d = 0.01, β = 0.0625
Asymmetric user parameters di ∈ [0.008, 0.015], βi ∈ [0.08, 0.15]
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Fig. 13. Results of the simulation with a state-dependent NEQM policy: (top)
The evolutions of user flow ratex, link queue sizeq, and (bottom) the AQM
scheme deployed versus time are shown.

We begin by describing the results of simulations carried out
using full state feedback. Using the NEQM policy described
in Section V, the individual user flow rates synchronize
after a short period of transients. Figure 13 depicts the non-
equilibrium evolution of the controlled system –x (averaged
over 10 users) and the queueq – as a function of time.
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Fig. 15. Results of the simulation with the drop-tail AQM scheme: the
evolutions of user flow ratex, link queue sizeq, the states of the MM
versus time are shown.

Note that on account of synchronization,x also represents
the individual user flow rates. The AQM accomplishes near
capacity utilization while maintaining a small average queue
size. Averages of the non-equilibrium solution are consistent
with the choice of rewardg(s) used in MDP (see Fig. 9).
Figure 13 also depicts the sequence of control actions, i.e.,
the specific AQM schemepu implemented at any given time
instance. Note that consistent with the MDP based optimiza-
tion, the stationary AQM policy was applied using an update
of control action every∆t seconds together with a ZOH.
For better illustrating the non-equilibrium aspects of closed-
loop dynamics, Figure 11 depicts the invariant measures of
the asymptotic dynamics and Figure 14 depicts the individual
time-series forx andq but now at a greater resolution.

In order to compare these results against the standard
AQM, we next simulated the multi-user system with the
AQM scheme 1 (droptail). The results for droptail are shown
in Figure 15. It is evident from the two figures that while
either of the two solutions are non-equilibrium, the MDP
based solution is clearly better because it shows a larger user

capacity utilization, smaller queue fluctuations, and averages
close to the requirement with respect to the reward function. In
summary, the MDP based solution uses the state information to
better anticipate the congestion and adjust the packet marking
accordingly. That it is able to do so with non-equilibrium
queue behavior that still achieves very close to maximum
capacity utilization (see Figure 13) is notable.

Next, we describe the results for the more practical case
where only the instantaneous queue sizeq was assumed to be
known. For estimation purposes, we used the Viterbi algorithm
as discussed in Section V. We formally assumed certainty
equivalence to hold and treated the estimate as the state.
The NEQM was thus applied according to the estimates.
Figure 16 depicts the results of this observer based control.
The estimation errors had a noticeable but small effect on the
performance of the algorithm. Analysis of this will be the
subject of future investigations.
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Fig. 16. Results of the simulation with a state estimation based feedback
control: (top) the evolutions of user flow ratex and link queue sizeq; (bottom)
the reals vs. estimated̂s state of the HMM and the AQM scheme deployed
vs. time are shown.

Finally, we discuss the results of simulations carried out
with asymmetric users; see Table IV for the simulation pa-
rameters. For the asymmetric case, the parametersdi and βi

for ith-user were picked from a uniform distribution whose
range is indicated in the table.

We again used the optimal NEQM policy together with
an estimation based on the reduced order symmetric Markov
model. With Markov model, the symmetric user flow rate
x was formally replaced by the spatially averaged flow rate
for the M asymmetric users (1

M

∑M
i=1 xi). As a result, there

are modeling errors introduced because of the reduction in
dimension (M states to a single state) and spatial averaging.
Note that the time-domain simulations were carried out with
the M + 1-dimensional asymmetric multi-user dynamical
system (1) and (2). Figure 17 depicts the results of this
simulation. Remarkably, even though the dynamic behavior
now is more complex (see for example, the queue trajectory),
the performance shows fair average capacity utilization (for x)
and queue sizeq.
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Fig. 17. Results of the simulation with a state estimation based feedback
control for the asymmetric multi-user case: (top) the evolutions of average
flow ratex and link queue sizeq; (bottom) the reals and estimated statês
of the HMM and the AQM scheme deployed versus time are shown.

B. Simulations in Ns2

We now simulate a multi-user, single bottleneck link sce-
nario implemented in the network simulator ns-2. We send
25 TCP flows over this duplex link of capacity8 Mbps
corresponding to100 packets/second for an average packet
size of1000 bytes. The maximum queue size is chosen to be
Qmax = 100 packets and the propagation delay to be10 ms
in the forward direction.

The NEQM is implemented in ns-2 similar to the other
AQM schemes by extending the C++ queue class. To deter-
mine the states at a given time the current queue size and flow
rate passing through the link are measured periodically. Notice
that, for real life deployments the current queue size is readily
available (to a router). Furthermore, a network measurement
tool such asabing [53] can be run continuously in the
background or variations in the queue size in conjunction with
the link capacity can be utilized to estimate the aggregate
flow rate. Once the state is known, the packets are dropped
according to the drop probabilities determined by the specific
AQM scheme dictated by NEQM. For example, if the policy
p2 is active at a time instance then incoming packets are not
dropped if q < qmin, they are dropped with probability0.3
if qmin < q < qmax, and are always dropped ifq > qmax.
For these simulations a similar set of parameters are used as
the ones in Table IV. However, the number of AQM policies
(Table III) are reduced from ten to four in order to simplify
the implementation complexity in the simulation environment.

Figure 18 (a) and (b) compares the queue and the user
behavior obtained with RED, and the NEQM. We observe that
ns-2 results verify the numerical analysis of the reduced order
model using Matlab. There is better queue utilization with the
NEQM policy in terms of size and variation as compared to
the droptail as well as RED. We note that, similar to RED,
the mean flow rate shows consistent capacity utilization for
NEQM flows. On the other hand, we observe in Figure 19
that there is a strong contrast in the mean user flow rate
between NEQM and the droptail scheme, which exhibits heavy

oscillations.
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Fig. 18. Results of the ns-2 simulations (for the parameters inTable II) with
(a) RED and (b) the NEQM schemes.
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Fig. 19. Results of the ns-2 simulations (for the parameters inTable II) with
(a) Droptail and (b) the NEQM schemes.

We observe a correspondence between the results of ns-2
simulations and reduced order model analysis. However, there
are also quantitative differences such as the frequency content
of the queue oscillations. In particular, numerical analysis of
the reduced order model shows high frequency dynamics.
Such a difference was also observed during the parameter
identification and discussed therein. Compared to the results
of the reduced order model, the user flow rates with ns-2
show more stochasticity. We conjecture this to be the effect
of noise in ns-2 simulations resulting from TCP windowing
effects and quantization of the flows via packets. Finally, when
NEQM and RED are compared we observe that their behavior
is similar. This is not surprising as the four individual schemes
used by NEQM are quite close to RED.

In order to investigate more realistic network settings, we
also study the effect of disturbances due to varying background
traffic and other factors. Disturbance analysis was carriedout
by injecting a constant bit rate (CBR) flow, which randomly
decreases the link capacity. This flow is randomly injected at
intervals of 0.1 seconds as a uniform disturbance of between
0 and250 packets/second corresponding up to25% of the link
capacity. Figure 20 depicts the user flow-rates and the queue
behavior in the presence of disturbance. We observe a visible
degradation in RED while the NEQM scheme performs almost
as good as before, which illustrates the robustness property of
the NEQM. This result is not very surprising when taking into
account the fact that NEQM makes use of both the flow rate
and queue size during its operation.

VII. C ONCLUSION

In this paper, we have presented an ergodic theoretic frame-
work for stochastic modeling, model computations, analysis,
identification, and MDP based control of nonlinear dynamics
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Fig. 20. Results of the ns-2 simulations in the presence of disturbance with
(a) RED, and (b) the NEQM scheme.

in communication networks. The framework was demonstrated
using both ns-2 simulations and simplified fluid models for
the AQM problem. Using equilibrium and local bifurcation
analysis as well as numerical simulations with simplified fluid
models, we illustrated the fact that methods for analysis and
optimization of non-equilibrium queue behavior areessen-
tial for a solution to this problem. Next, we presented an
identification methodology for identifying the parametersof
the nonlinear dynamical system model which explicitly take
the non-equilibrium behavior into account. Using stochastic
approximations of this model, an optimization problem was
defined and solved via standard MDP methods to obtain
a specific optimal stationary AQM policy, NEQM, as an
example. The NEQM scheme developed provides first such
explanation of AQM schemes such as RED and was shown
here to perform better than the droptail scheme using ns-2
simulations.

We view the analysis and optimization framework presented
here as the first step to better understand the AQM schemes
mentioned in the introduction. As we have discussed in
Section II, a study of the non-equilibrium dynamics is crucial
for the analysis of non-equilibrium behavior we observe in
networked systems. Likewise, the optimization framework
outlined above and the NEQM scheme as its illustrative
example is a first step towards understanding the role of
non-equilibrium control in optimizing queue behavior and
system performance. In order to do this rigorously, we will
need to understand the role of various complexity mitigation
approaches including

1) symmetry based reduction,
2) rigorous spatial averaging for the multi-user case,
3) numerical methods used for approximations of stochastic

operators, and
4) selection of a finite number of policies for tractable

computation of optimal control.

This is a focus of continuing investigations.
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non-equilibrium dynamics in communication networks,” inProc. of
Conference of Decision and Control, San Diego, CA, 2006. [Online].
Available: http://decision.csl.uiuc.edu/ alpcan

[29] S. Deb and R. Srikant, “Rate-based versus queue-based models of
congestion control,”IEEE Transactions on Automatic Control, vol. 51,
no. 4, pp. 606–619, April 2006.

[30] F. Baccelli, D. R. McDonald, and J. Reynier, “A mean-fieldmodel
for multiple TCP connections through a buffer implementing RED,”
Performance Evaluation, vol. 49, pp. 77–97, 2002.

[31] K. B. Kim, “Design of feedback controls supporting TCP based on the
state-space approach,”IEEE Transactions on Automatic Control, vol. 51,
no. 7, pp. 1086–99, July 2006.

[32] E. Korkut, “Limit cycling in TCP Networks,” Master’s thesis, University
of Massachussets, Amherst, MA, 2006.

[33] G. Raina, “Local bifurcation analysis of some dual congestion control
algorithms,” IEEE Transactions on Automatic Control, vol. 50, no. 8,
pp. 1135–1146, August 2005.

[34] G. Raina and D. Wischik, “Buffer sizes for large multiplexers: TCP
queueing theory and instability analysis,” inEuroNGI Conf. on Next
Generation Internet Networks, 2005.

[35] C. Li, G. Chen, X. Liao, and Y. Juebang, “Hopf bifurcation in an internet
congestion control model,”Chaos, Solitons Fractals, vol. 19, pp. 853–
862, 2004.

[36] X. F. Wang, “Controlling bifurcation and chaos in internet congestion
control system,” inProcs. of the 4th World Congress on Intelligent
Control and Automation, Shanghai, China, June 2002, pp. 573–576.

[37] H. Yin, P. Wang, T. Alpcan, and P. G. Mehta, “Hopf bifurcation and
oscillation in communication networks with delays,” inProc. of 17th
IFAC World Congress, 2008.

[38] A. Lasota and M. C. Mackey,Chaos, Fractals, and Noise: Stochastic
Aspects of Dynamics. New York: Springer-Verlag, 1994.

[39] M. Dellnitz and O. Junge, “On the approximation of complicated
dynamical behavior,”SIAM Journal on Numerical Analysis, vol. 36, pp.
491–515, 1999.

[40] I. Mezic and A. Banaszuk, “Comparison of systems with complex
behavior,”Physica D, vol. 197, pp. 101–133, 2004.

[41] M. Dellnitz and O. Junge,Set oriented numerical methods for dynamical
systems. World Scientific, 2002, pp. 221–264.

[42] G. Froyland,Nonlinear Dynamics and Statistics: Proceedings, Newton
Institute, Cambridge, 1998. Birkhauser, 2001, ch. Extracting dynamical
behaviour via Markov models, pp. 283–324.

[43] K. Salamatian and S. Vaton, “Hidden Markov modeling for network
communication channels,”SIGMETRICS Performance Evaluation Re-
view, vol. 29, no. 1, pp. 92–101, 2001.

[44] R. Laalaoua, T. Czachorski, and T. Atmaca, “Markovian model of RED
mechanism,” inProc. of the First IEEE/ACM Internat. Symp. on Cluster
Computing and the Grid, May 2001, pp. 610–617.

[45] P. G. Mehta, M. Hessel, and M. Dellnitz, “Symmetry of attractors
and the Perron-Frobenius operator,”Journal of Difference Equations &
Applications, September 2006.

[46] UCB, LBNL, and VINT, “Network simulator ns (version 2),”
http://www.isi.edu/nsnam/ns/.

[47] P. G. Mehta and U. Vaidya, “On stochastic analysis approaches for
comparing dynamical systems,” inProc. of the 44th IEEE Conference
on Decision and Control, Seville, Spain, December 2005, pp. 8082–87.

[48] M. Golubitsky and I. Stewart,The Symmetry Perspective. From Equilib-
rium to Chaos in Phase Space and Physical Space. Basel: Birkḧauser,
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