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Abstract—In this paper, we develop, analyze and imple- to implement end-to-end congestion control [1]. A useful
ment a congestion control scheme obtained in a noncoop-concept in this noncooperative congestion control game
erative game framework where each user’s cost function is js the one of a Nash equilibrium [2] where each player
composed of a pricing function, proportional to the queue- minimizes his/her own cost (or maximize payoff) given
ing delay experienced by the user, and a broad class of util- \ . L .

all other players’ strategies. There is rich literature on

ity functions capturing the user demand for bandwidth. Us- ) ) .
ing a network model based on fluid approximations and 92Me theoretic analysis of flow control problems utiliz-

through a realistic modelling of queues, we establish the ex- INg both cooperative [3] and noncooperative [4], [5], [6]
istence of a unique equilibrium as well as its global stability frameworks. Congestion control schemes utilizing pricing
for a general network topology. We also provide sufficient schemes based on explicit feedback have been proposed
conditions for system stability when there is a bottleneck py Kelly et al. [7], [8], Gibbens et al. [9], and subsequent

link shared by rgu:tiple lésersdexperr:encinr? non_—nelgfligib(lje studies have further elaborated on this approach following
communication de ays. ased on these theoretical foun a-its baSiC prinCipIeS [10], [ll], [12]

tions, we implement a window-based, end-to-end congestion

control scheme, and simulate it inns-2 network simulator Although the game theoretic approach provides a suit-
on various network topologies with sizable propagation de- aple framework for formulating and studying congestion
lays. and flow control problems in general networks, there are

Methods Keywords: Control theory, Mathematical pro-

. A X . . some inherent restrictions on implementable cost func-
gramming/optimization, Simulations, Economics.

tions in the case of Internet-style networks. For example,
Index Terms—Congestion control; Internet; noncooper- the current structure of the Internet makes it difficult, if not
ative games; stability. impossible, for users to obtain detailed real time informa-
tion on the state of the network and on other users. There-
I. INTRODUCTION fore, users are bound to use indirect aggregate metrics that

Game theory provides a natural framework for deve® a\_/ailable to them, such as pgcket drop rate and va_ria—
oping pricing and congestion control mechanisms for ti#@Ns in the average round trip time (RTT) of packets in
Internet. Users on the network can be modeled as pl der to infer the current situation in the network. Packet
ers in a congestion control game where they choose tH#8iPPs. for example, are currently used by most widely de-
strategies or in this case flow rates. Players are noncoopifyed versions of TCP as an indication of congestion.
ative in terms of their demands for network resources, altithis paper, however, we propose and analyze a pric-
have no specific information on other users’ strategies. /g and congestion control scheme based on variations in
user's demand or utility for bandwidth is captured in §1€ queueing delay a user experiences. A similar approach
utility function, and may not be bounded. On the othdlas been suggested in a version of the transfer control pro-
hand, one can devise a pricing function, proportional $8¢0! (TCP), known as TCP Vegas [13]. Although TCP
the bandwidth usage of a user, in order to preserve tHegas is more efficient than a widely used version of TCP,

network resources and to provide an incentive for the usyP Reno [14], the suggested improvements are empiri-
cal and based on experimental studies. Another study by
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for each user that is defined as the difference of pricify the it user over this pathR; satisfies the bounds
and utility functions. The pricing function is proportionalD < z; < ; yye.. The upper bounds; gz, ON theith

to the queueing delay experienced by the user, whereagr’s flow rate may be a user specific physical limitation,
the utility function that quantifies the user demand fand cannot exceed the minimum capacity of the links on
bandwidth belongs to a broad class of strictly increasittige routemin;{C; , I € R;}.

and strictly concave functions. Through a network model |t js possible to define a routing matriA,, as in [7] that
based on fluid approximations, and a realistic queueiggscribes the relation between the set of rolesssoci-

model, we show the existence of a unique ‘Nash’ equited with the users (connections) and links L£:
librium, under the assumption that the effect of a user's

flow on congestion cost is vanishingly small, especially if {1’ if source i uses link i € Mand

the number of users is large. Furthermore, we establidh; = . . .
g gl 0, ifsourceidoes notuse link [ € L

the global stability of the equilibrium under a general net-
work topology. We also investigate stability of the system _ _ _ _ 1

in a network with non-negligible propagation delays, and USing the routing matrbA, the capacity constraints of
provide sufficient conditions for stability in the case of 1€ links are given by

bottleneck node with multiple users. Based on the theo-

retical foundations developed, we design a window-based, Ax<C , 2
end-to-end congestion control scheme for Internet-style

networks, which is TCP-friendly [15]. This congestiowherex is the (M x 1) flow rate vector of the users and
control scheme is then simulated in Network Simulat&® is the (L x 1) link capacity vector. If the aggregate

2 (ns-2 over Internet protocol (IP) for various networksending rate of users whose flows pass throughiliek-
topologies. The rest of the paper is organized as followseeds the capacity;;, of the link then the arriving pack-
The underlying network model and cost function are givegis are queued (generally on a first-come first-serve basis)
in the next section. In Section Ill, the existence of a unique the buffer,b;, of the link with b; ,,,,,, being the maxi-
equilibrium and global stability of the system under a gemaum buffer size. Let the total flow on linkbe given by

eral network topology are established. Section IV gener; := ;. ;. Thus, the buffer level at link evolves
alizes the stability analysis of Section Il to the case witim accordance with the following

delay, with a single bottleneck link. In Section V we pro-

vide a realistic implementation of the congestion control [z — C]~, if bi(t) = brmax

scheme for IP networks. Section VI includes simulation ; _ .

results, and is followed by the concluding remarks of Sec- bu() = 7 = Ci, ff 0<bi(t) <bimas » G

tion VII. [z -G, if () =0

[l. THE MODEL whereb; (t) denotegdb;(t)/dt), [.|* represents the func-
A. The Network Model tionmax(.,0), and[.]~ represents the functianin(. , 0).

We consider a general network model based on fluid
approximations. Fluid models are widely used in address-
ing a variety of network control problems such as com. The Cost (Objective) Function
gestion control [12], [5], [16], routing [5], [6], and pric-
ing [7], [3], [17]. The topology of the network is char- Animportantindication of congestion for internet-style
acterized by a set of node8 = {1,...,N} and a set networks is the variation in queueing delay,which is
of links £ = {1,..., L}, connecting the nodes. In thisdefined as the difference between the actual delay expe-
network model, we make the natural assumptiocari- rienced by a packet*, and the fixed propagation de-
nectivity and letM := {1,..., M} denote the set of ac-lay of the connectiongd?. If the incoming flow rate to
tive users. Each link € £ has a fixed capacitg; > 0, a router exceeds its capacity, packets are queued (gener-
and an associated buffer sige> 0. For simplicity, each ally on a first-come first-serve basis) in the existing buffer
user is associated with a (unigue) connection. Hence, tifethe router, leading to an increase in the RTT of pack-
ith (i € M) user corresponds to a unique connecticets. Hence, RTT on a congested path is longer than the
between the source and destination nodgsie; € A, base RTT, which is defined as the sum of propagation and
and we denote the corresponding route (path), whichpsocessing delays on the path of a packet. The queueing
a subset ofC, by R;. The nonnegative flowg;, sent delay at thd!” link, d;, is a nonlinear function of the ex-



cess flow on that link, and is given by the analysis to a single link with multiple users. Finally,
) - we establish stability for a general network topology with
{a(fz - Cz)} ;i di(t) = dimaa multiple links and users.
di(x,t) = § & (@ - C1), if 0 <di(t) < diymac »
ll - o + i 4 (8) = 0 A. Stability for a Single Link with a Single User
= (T — [ = : . . : .
[Cl (@ l)} ’ ((t) For a single user on a single link, the equations describ-

4) - . .
. . . ) g the dynamics of the system consist of the user algo-
n ﬁcg‘”da”ge_ W'”;] the buffer m°de'_kjesc”b‘3d_ in é3>rthm, which is a simplified version of (6), and queueing

WIth di,mas DEING the maximum possible queueing ed'elay equation for a single user derived from (4). For the

lay. Thus, the total queueing delag;, a USET EXPET” time being we ignore the effects of boundaries on the sys-
ences is the sum of queueing delays on its path, namﬁ&q_

Di(x,t) = > 1ep, di(x,t), i € M. dU (x)
Let us define a cost function for each user as the dif- o(t) = dr ad(z,t) )
ference between pricing and utility functions. The pricing d(t) = % -1 ’

function of thei?” user is linear in;, and is proportional . . _
to the total queueing dela®; (¢) of the user. The utility Whered is the queueing delay; is the user flow rate, and
function U; (z;) is assumed to be strictly increasing, dif¢ 'S the link capacity. _ -

ferentiable, and strictly concave; it basically describes the 1€ System (7) has a unique equilibrium pdint, d*)
user's demand for bandwidth. Accordingly, we make ugdven byz* = C'andd” = (1/a) dU(z")/dz. Defining

of variations in RTT to devise a congestion control aniff® dueueing delay and flow rate around the equilibrium

pricing scheme. The cost (objective) function for e POINGLZ :=z —a* andd := d —d*, we obtain the follow-
user at time is thus given by ing equivalent system around the equilibrium:

Ji(x,t) = s Di(x,t) 2 — Ui(as) (5) 2(t) = g(&) — ad(t) @®

G-
which s/he wishes to minimize. In accordance with this d(t) = o=

objective, we consider a simple dynamic model of the nethere the functio(z) is defined as
work game where each user changes his flow rate in pro-

portion with the gradient of his cost function with respect g(%) == dU (z) — dU("E*),
to his flow rate,z; = —0J;(x)/0z;. Thus, the update dz dz
algorithm for thei?” user is: Note that
_ >0 ,ifz<0
[‘”{T@ — i Dy(x, t)] » 2 = Timas 9@ <0 ,if >0 , 9)
T = dl{dzx(jh) — Q4 Di(X,t), if0<ax; < Timaz » =0 ,ifz=0
[‘wdif) — a; Di(x, t)r, if z; =0 due to the fact thal/(x) is strictly concave inz, and

(6) hence dU(x)/dx) is strictly decreasing.
where the effect of thé” user on the delay);(x, ), sslhe ~ The system (8) can be viewed as a generalized pendu-
experiences is ignored. This assumption can be justifidn equation withg(z) as the friction term [18]. Let us
for networks with a large number of users, where the edefine a sef2 as
fect of gach user is \_/anls_h_mgly small. F_ur_therr_nore,. from Q= {(3, J) ER?: —1* < & < Ty — T
a pra_ctlcal point of view, _|t is extremely difficult if not im- and — d* < d < dyyp — ),
possible for a user to estimate his/her own effect on queue-
ing delay. whered, o and,,q. are finite upper-bounds ahandzx
respectively.
[Il. STABILITY ANALYSIS Next define an energy-like Lyapunov function on the

In this section, we analyze the stability of the systeset(2 1
described by (4) and (6). First, we investigate the sim- V(E,d) = —(2)? + C(d)?. (10)
ple case of a single link with a single user in order to @

gain further insight to the systerh. We then generalize Notice thatV’(z, d) is positive definite o). The deriva-

_ o _ o tive of V' along the system trajectories is given by
tAdmittedly, in this case the assumption of an individual user not
2

affecting the delay on a link is violated, but still this exercise is useful -~ L
for the later analysis on the multiple users case. V(a:, d) = &g(x) r<0,
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where the inequality follows from (9). Thusj(i,d) is again a unique equilibrium pointx*, d*) 2, at which
negative semi-definite. L&t := {(z,d) € Q: V(,d) = (1/a;) dUi(z})/dx; is independent of, * = C and
0}. It follows from (9) thatS = {(#,d) € Q : & = 0}. d* = (1/y)dU;(z¥)/dz;. Defining the system around
Hence, for any trajectory of the system that belong§,to this equilibrium point similar to (8) we obtain

we havet = 0. It follows then directly from (8) that

:i’l(t) = gz(@) - Oéid(t) y 1= 1, .. .,M

1=0=2=0=g9(@)=0=d=0. . M
(@) d(t):ézii . (11
Therefore, the only solution that can stay identically in i=1
S is the origin, which corresponds to the unique equilib- . .
rium of the original system (7). We next consider the e vherea := fay,...,an] is the user pricing vector,
1(z1),...,Un(xpr) are strictly concave user utility

fect of boundaries as described by (4) and (6) with d funct d the functions (1 defined similaril
andz = ;. First, we analyze the case of the unique eqan.C lons, and the functiong(z;) are defined similarily
in the case of (9).

librium being an inner point. Assume that the trajectory i : . ~
the system hits the boundady= dyy = dimas—d* > 0. -SLUS define the generalized seas
In ordLer for the trajectory to stay on t‘hIS boundary, we ¢ _ (%, d) € RMH! . 0¥ < &, < 2 maw — @ , Vi
needd = z/C > 0. However, we haveg < 0 from (8) and — d* < d < dmas — d*},
as due to (9)y(z) > 0 whenz < 0. Thenz, and hence
d, necessarily become negative after some time. Th¥d)erédma, and; mq, are upper-bounds ahandz; re-
the trajectory has to leave this boundary. Furthermore, wectively. _ ' .
havel” < 0 on the trajectory of the system. As a result, We next define a Lyapunov function on the Setsimi-
once the trajectory leaves a boundary it can never hitar to the one of (10):
again.
We proceed with other three boundaries in a similar < 5 Lo\ 72

. ) : V(x,d) = —(Z;)"+ C(d)* . 12
fashion. Assume that the trajectory of the system hits the (%,d) ; oy () () 12)
boundaryd = d,i, := —d* < 0. Since from (8) and (9)
>0 7 andj necessarily become positive after somehe rest of the analysis is similar to the one in the case of
time. Hence, the trajectory has to leave the boundary. @§ingle link with a single user,]\?ndztherefore itwill not be
the other hand, whef = .., — =*, we haveg(z) < 0 'epeated. In particulal/ = > ;- 579:(7:)7; < 0, and
andci > 0. Thus, we obtainl > 0 after some delay and 'S €qual to zero only ift; = 0Vi = d = 0. Again, the
i < 0 from (8), forcing the trajectory out of the boundarySYStém is asymptotically stable.
Finally, in the case of = —z* < 0 we haveg(z) > 0

andd < 0. Thus, after some timé < 0, and henceg > 0 C. Stability for a General Network Topology with Multi-
from (8). Again, the trajectory leaves the boundary arjgle Users

never returns back due to the non-increasing Lyapunowe finally establish the stability of the system under a
functionV’. general network topology with multiple links, and with a

In the case of a boundary solution, once the trajectogéneral routing matrixA as described in (1). The gener-
reaches the equilibrium point it stays on the boundary. Fglized system is described by (again without the boundary
example, assume that = z,q4; < C. Then, from (6) we gffects)
havei = Z > 0. Furthermored = 0 from (8). Thus, the
trajectory stays on the boundary and on the equilibrium ;. (4) — dUs(x;) aiDi(x,t), i=1,....M
point. In conclusion, the system (7) with boundaries given dx; , (13)
in (4) and (6) is asymptotically stable on the $et:= dit)=—=-1,1=1,...,L
{(z,d) € R? : 0 € 2 < Zynae and0 < d < dypaa} DY
LaSalle’s invariance theorem [18]. where D;(x,t) = Y cp di(X,t), Z1 = Y cp, Ti

and C; is the capacity of thé*" link. For this general

B. Stability for a Single Link with Multiple Users case, equilibrium point or points of the system cannot be
é}lescribed explicitly. Therefore, we first investigate the

The analysis for a single link with multiple user

is a fairly straightforward generalization of the single- 2the proof of uniqueness for a more general case which also cap-
link single-user case discussed above. The system hass this special case will be provided in Proposition 111.1



uniqueness of the equilibrium. Toward this end, we aés a result, (x*,d*) constitutes a unique equilibrium
sume thatA is a full row rank matrix withA/ > L which point for the system (13). O

is in fact no loss of generality as non-bottleneck links on
the network have no effect on the equilibrium point, and
can be safely left out.

We note that the unique equilibrium point of the system
s only an approximation to the Nash equilibrium since
the effect of thei’® user on the delayD;(x,t), s/he ex-
Proposition Ill.1. When A is full row rank, the sys- periences is ignored. This approximation becomes more
tem (13) has a unique equilibrium point. accurate as the number of users in the network increases.
Defining the delays at linkg];, and user flow rates;;,

Proof. By settingi:;(¢) andd;(t) equal to zero for all and ol -
around the equilibrium a4 := d; —d; andz; := z; — ]

1 one obtains

R

Ax=C (14) respectively, for all andi, we obtain the following system
around the equilibrium:
f(a,x) = ATd | (15) ‘ )
whered = [di,...,d] is the delay vector at the links, xi(t) - gll( i) —aDi(t), i=1,.... M
and the nonlinear vector functidris defined as (1) = o > E,l=1,...,L . (16)
©:l€ER;
1 dU; 1 dUy ©
f(Oé,X)Z: 7 yrety T : ~ 5 . . .
o; dz; ay dxyy whereD; = 7, d;, andg;(.) is defined as in (9). For
he time being, we ignore the effect of boundaries on the

Suppose that there are two different equilibrium pom%

(x7,d}) and(x3,d%). Then, from (14) it follows that ystem

Let us define a sd? (as before) as

2

Similarly, from (15) we have and —dy < dl S dl,max dl , Vi, 1},
fla,x}) — fla,x5) = AT(dF — d3) . whered; ., aNdx; 4, are upper bounds oty andz;,
respectively. .
Multiplying this with (x% — x3)? from left we obtain We next define a Lyapunov function on the §ets a

i} o . . generalized version of the one of (12):
(x7 —x3)" [f(a,x7) — f(a,x3)] =0

M L
. 1 5
We rewrite this as x,d) =) —(&)° d;)? 17
write thi V(x.d) ;a@) +Zlcl< DR )
ot eyt L [Uiad)  dUias)] : i
Z(Xli —X3) w | de;  drz =Y The functionV' (z, d) is positive definite orf2, and its

=1 derivative along the system trajectories is given by

SinceU;’s are strictly concave, each term in the summa-

tion is negative, with equality holding only if], = «3,. . Z 3 <0
Hence, we conclude that has to be unique, that is < )%i <
=
X" =x] =x5 . i - =\ A :
1 2 where the inequality follows becaugeg(z;) z; < 0Vi.

Thus, V(%,d) is negative semidefinite. Lef :=
%,d) € Q : V(x d) = 0}. It follows as before that

{(x,d) € Q : x = 0}. Hence, for any trajectory of
r}he system that belongs identically to the Setwe have
x = 0. It follows directly from (16) that

From this, and (13), it immediately follows thay;,i =

., M, are unique. This does not however immediatel
imply thatd;,l = 1,..., L, are also unique. To establis
this, we first multiply (15) from left byA,

Af(a,x*) = AATd .
(o x7) Xx=0=%=0=g(7)=0Vi

SinceA is of full row rank, the square matriA AT is = D;=0Vi=d; =0V,
full rank, and hence |nvert|ble Thus, we obtain a unique

the matrix A is of full row rank. Therefore, the only so-
d* = (AAT)LAf(a,x*) lution that can stay identically i$ is the origin, which



corresponds to the unique equilibrium of the original sys- IV. STABILITY UNDER DELAY

tem. It was shown in Section Il that the system described

We now investigate the effect of the boundaries givem/ (4) and (6) is globally asymptotically stable under a

in 2 and described by (4) and (6). First, we analyze the, o ra| network topology. We now investigate the global

case when the unique equilibrium is not on the boundarigs,jjity of the system under arbitrary propagation delays.
of the set2. Consider the case whedg= d; — d;f for

N n ly;max First, we analyze the simple case of a single link with a
some linkl = [ while all links except are in equilibArium. single user to gain insight into the problem. Next, we
Then, for any usei whose flow passes through lilkand generalize the analysis to a general network with a single
T; > 0, we havey;(Z;) < 0, and from (16)r; < 0. There- bottleneck node and multiple users.
fore, ", jc p, @i decreases until it is negative which in turn

makesd; < 0. Thus, the trajectory leaves the boundary. Stability for a Single Link with a Single User under
SinceV < 0, the trajectory cannot hit the same boundarpelay

again. The case, = —d; can be handled in a similar - gor the case of a single user on a single link, we modify
fashion. We note that, the cage= —d;, if it occurs in - gquation (7) describing the system around the equilibrium

equilibrium corresponds to an empty buffer at the link by introducing a maximum delay between the user and
where the link has no effect on the system for the givgRe |ink:

set of parameters. As a result, that link can be left out. i:(t) =g(%) — ad(t —7)
For the boundary at; = x; ;mq. — ;, we haveD; > 0 J(t) B lj(t )

given that all other users passing through links on the path - C

of the*" user are in equilibrium. Then, it immediately Notice that (18) is a set of delay differential equations.

follows from (16) thatz; < 0 and the trajectory leaves thegch systems have been studied extensively in [19], [20].

boundary for good. Otherwise, we have a boundary SqQere we will particularly make use of the methods pre-

feasible flow ratez; ..., Which contradicts with the ini- haye

tial hypothesis on the equilibrium point. A similar argu-

ment holds for the case af = —z7, i.e., either there is  #(t) = g(&(t)) — ad(t + r) + a[d(t + ) — d(t — 7)],

a boundary solution or the trajectory eventually leaves the

boundary and does not hit it again due to the Lyapunénd

analysis. 0
We next analyze the case of the equilibrium being o&(t —r)=g(&(t—71)) - aj(t) + a/ F(t+ s)ds.

the boundary. Similar to the single user case, once the CJ o

Lrajectory reachgs the equilibrium po_mt it stays on the On the same sét as in the delay-free case, we define
oundary. Consider the case whefe= z; ,,q, for the .

ith user, while other users have equilibrium flows that aPeLyapunov function

(18)

less than maximum. Then, from (6) we hayve= z; > 0. - 1 ) N
Furthermore, it follows from (16) that; = 0,VI. Thus, V(z,d) = a@(t —7))”+ Cd(t))

the trajectory stays on the boundary. We note that the +l /0 /t P(u— r)duds (19)
other cases can be handled in a similar fashion. These CJ o Jigs

results are summarized in the following theorem, where ~
we again invoke LaSalle’s invariance theorem: which is positive definite if). Taking the derivative oV

Theorem IIl.2. Let A be full row rank. The system along the system trajectories, we obtain

(s - 2 .
i) = ) D) =1 V(@ d) = Zg(@(t—r)i(t— )
. T i ) 2 0
dl(t):%—l,l:l,,L +C/;()2ri'(t—r)i'(t+5—T)dS
with the unique equilibrium poirtc*, d*), and boundary +1/ [32(t — ) — #2(t + 5 — 7)]ds
point behavior described by (4) and (6), is asymptotically C g

stable on the set
Q= {(x,d) e RM*L: 0 < 2 < 7 g
and0 < d; < dj ymaa, Vi, l}. 28(t — )it +s—1) < Bt — 1)+ T2t +5—1),

Using the simple algebraic inequality
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one can bound the derivativé above by from (18). Hence, after some timé, < 0, and the tra-
) 9 Ay jectory leaves the boundary. Sinte< 0 the system tra-
V(z,d) < ag(ir(t —r)z(t—r)+ EOEQ(t -r) jectory may never return to the boundary. The analysis of
the remaining boundaries can be handled in a similar way,
Thus, V (%, d) can be made negative semi-definite bgnd will be omitted. This now brings us to the follow-
imposing a condition on the maximum delay In this ing theorem, where again LaSalle’s invariance theorem is
case, lets := {(#,d) € Q : V(i,d) = 0}. It follows invoked:

from (9) thatS = {(z,d) € 2 : & = 0}. Hence, forany thaorem IV.1. The system
trajectory of the system that belongsYpwe haver = 0.

It also follows directly from (18) that i(t) = dU(a(t)) ad(t — )
dx
i=0=2>i=0=¢gF) =0=d=0. d’(t):%x(t—r)—l

Therefore, the only solution that can stay identicallysin with the unique equilibrium pointx*, d*) and boundary

is the origin, which corresponds to the unique equilibriugoint behavior described by (4) and (6) is asymptotically

of the original system (7). stable on the s if the maximum delay;, in the system
We thus conclude that the system (18) is asymptoticabtisfies the condition

stable by LaSalle’s invariance theroem if the maximum LC

delayr satisfies the condition r< %
wherek := inf T)/Z|.
r< ng (20) L e@)/3]

(6

B. Stability for a Single (Bottleneck) Link with Multiple
Users under Delay

We now generalize the preceding analysis of a single
link with a single user to multiple users by introducing

In order to gain further insight into this condition, Weuser_spemﬂc maximum delays= [, ..., 7] petween -
o the link and the users. The system has a unique equilib-

compute the parametér for the specific case when the. . . . . .
. o o rium point (x*, d*) as characterized in Section Ill. Mod-
utility function is taken as the logarithmic one, that is

U(z) = ulog(x + 1). In this case we obtain |fy|_ng the_ system_ equations (1'1) around'thls equilibrium
point by introducing the associated maximum delays we

wherek is defined as

S

g(~

k.= inf ) )

—x*<T<Tmaz—T*

() U U —u obtain
g €Tr) = — " = " B B - .
z+1 o +1 (z+1)(a*+1) Li(t) = gi(2() —aqd(t — 1) , i=1,..., M
M
and hence o 1 -
d(t) = 5 Zmi(t — )

k= min “ = . . = 21

0<o2tmar (2 + D@ + 1) (Zmae + 1)(@* + 1) (21)

Following an approach similar to the one in the single user
The requirement on the delay terris dependent on the case one gets for thé* user
equilibriumz*, and sincer* € [0, x , a safe bound on . - ~
is o it —ri) = gi(@(t — i) — cud(t)
uC

0 M
.
< il 5 .
" 20(@maz + 1)2 + c /o zjl:rj (t+s—rj)ds.
. . t=
Of course a better bound can be obtained drwe know Wi in defi itive definite L functi
thatz* < x4, and that the trajectory also remains in € again define a posilive detinite Lyapunov function

a small neighborhood of the equilibrium?*. This would on the same corresponding $eas in the delay-free case:

very much be dependent on the application at hand. L Mo ) S
The analysis of the effect of boundaries on the system V(X,d) = > (@it —7:))" + C(d(t))
is almost identical to the one of the case without delay. =1 ZM o ,
Assume thati(t) = dyas ¥t € [~7,0]. In order for the +% / / 22(u — r)du ds.
trajectory to stay on the boundary at> 0, one needs C -2 Jets

Z(t) > 0 Vt € [-r,0]. However, we have(t) < 0 (22)



Taking the derivative of/ along the system trajectoriesfrom (21)#;(t) < 0 ,¢ > 0. Therefore,) ", #; decreases

we obtain until it is negative which in turn makes < 0. Thus, the

M trajectory leaves the boundary. Sine< 0, the trajec-
S 2 ~ ) ) e
V(x,d) =Y —gi(@i(t—r:)E(t — 1) tory cannot hit the same boundary again. A similar anal-
P ysis also applies to the cade= —d*. For boundaries on
1 0 MM #;, assume that all users but & one are in equilibrium,
+5 /_27' Z Z 22i(t = ri)xj(t + s — rj)ds andZ; = i max — =} Vt € [-r,0]. Then, we necessarily
o ’zl J=1 haved > 0 after some time, and hendge < 0. Thus,
+% Z/ [i?(t ) - f?(t +s—7r)ds the trajec_tory leaves the boundary, and n_ever r_etl_Jrns due
¢ oy J -2 to the strictly decreasing Lyapunov functiéh Similar
. arguments also hold for the case when all users but the
We bound the derivativl” above by ith one are in equilibrium, and; = —z7. In the case of
boundary solutions, the analysis is identical to earlier ones
M . . .
V(% d) < 2 Vg (1 A and therefore will be omitted. The following theorem now
(%,d) < Z; o 9@t = )it =) extends the results of Theorem IV.1 to the multi-user case.
1=
+4M” #2(t — 1) Theorem IV.2. The system
C

The derivative ofl” can be made strictly negative by ;(¢) = —~—22)

imposing a condition on the maximum delay in the sys- J\fxl
tem, rmaz = max; 7. In this case, let == {(x,d) € () = 1 St - ) — 1 7
Q: V(x,d) = 0}. Itfollows as before thaf = {(x,d) € C &~

Q:%x= 0}. Hence, for any trajectory of the system that
belongs identically to the se&t, we havex = 0. It also with the unique equilibrium poir(tx*, d*), and boundary
follows directly from (21) that point behavior described by (4) and (6), is asymptotically
_ 3 stable on the corresponding s@t if the maximum delay,
x=0=x=0=¢(T)=0Vi=d=0, Tmaz, IN the system satisfies the condition

where we have made use of the fact that the mahriis kminC

of full row rank. Therefore, the only solution that can stay Tmaz < 2M Qmaz
identically in S is the origin, which corresponds to the

unique equilibrium of the original system. As a result, th&N€recma: andki, are defined in (24).
system (21) is asymptotically stable by LaSalle’s invari-
ance theorem if the maximum delay in the system, .,

L » V. AN IMPLEMENTATION OF THE CONGESTION
satisfies the condition

CONTROL SCHEME

Trmaz < 2];;#0 , (23) The continuous time network model, cost function and
Xmaz user responses in Section Il are based on fluid approxima-

wherea,qa. andk,,;, are defined as tions. In reality, however, users update their flow rates
only at discrete time instances corresponding to multi-

Qmaz = MAX A ples of RTT. Hence, for implementation purposes, we dis-

g(Z;) (24) cretize the reaction function of th& user, and normal-
kmin := min inf - . .
i 2 <E < mar—a | T ize it with respect to the RTT of the user. In addition,

we need a specific utility function in order to quantify

Notice that the bound on the maximum delay requirafle user response in (6). Logarithmic utility functions are
for the stability in the system is affected by, among otheyidely used in the literature not only because they have
things, the maximum pricing parameter and the numbsice properties like strict concavity but also because they
of users. adequately capture several important concepts economics,

We investigate the effect of boundaries on the systesuch as the law of diminishing returns. We choose the fol-
first in the case of the equilibrium being an inner ongowing utility function for:t" user:
Consider the casé(t) = dpar — d* Vt € [-r,0]. Then,
for any user with z;(¢) > 0, we havey;(z;(t)) < 0, and Ui(z;) = u;log(z; + 1),



whereu; is a user specific utility parameter. The optimal  the last acknowledged one, and reduces the window
user response is, therefore, a discretized version of (6), size.

and is given by The receiver side, on the other hand, has the function of
+ acknowledging received packets. If no packet is received
U for a specific time, say RT'T, last received packet is ac-
i+ 1) = |@i(t) + Ki| —~— — ) dit ; .
zi(t+1) zilt) + [xi(t) +1“ ZGZR' ! )} knowledged again.
(25)
wherek; is a (user specific) step-size constant. VI. SIMULATIONS

The congestion control scheme characterized by the
user response (25) is implemented in a Game (theory)We simulate the proposed congestion control scheme,
Based Congestion Control (GBCC) protocol using tHféBCC, onns-2 The underlying protocol used for rout-
Network Simulator 21§s-2 [21]. The simulatoms-2is ing is the standard IP. Links and queues are chosen to be
chosen because it provides both a realistic environméhtplex and drop-tail, respectively. For simplicity, we fix
for testing the proposed congestion control scheme &ifi¢ packet size td, 000 bytes. First, we simulate GBCC
a level of abstraction for easy implementation. GBCC Without a slow start mechanism in the simple single-user
a simple window based protocol for best-effort data tragingle-link case. The parameters in (25) are chosen as
fic. It is devised as an end-to-end sliding window prox = 30 andu = 10,000. The buffer size i$0K B and
tocol [22], where the sender side adjusts its window siRI T varies from10ms to 50ms, and t0200ms. We ob-
according to the reaction function (25). For simplicity, reserve in Figure 1 that as RTT gets too large, the system
ceiver window size is chosen as one. We also implemdigcomes unstable in accordance with the analysis in Sec-
a version with a simple slow start mechanism where titien IV. Notice that it takes up t@ seconds for the flow
window size is increased by one per RTT until a pack# reach its capacity in this simulation. Therefore, we use
loss is observed. We next give an overview on GBCtbe slow start version of GBCC for the rest of the study.
scheme by summarizing the sender and receiver side func-
tionalities. u

x 10° Single Link Single User with various Delays
T T T T T T

A. GBCC Protocol F A A VAR WA W L

As one of the goals of GBCC protocol is compatibility Lo |
with existing protocols, most of the functionality is on the T R
sender side. Specifically, the sender side has the following £ | |
functions:

o The sender puts sequence number and time stamp =~ °[*
into the packet header. It estimates RTT and base «
RTT, which is calculated as the minimum of the 3/
RTTs until that moment, by using the received ac- 2
knowledgment (ack) packets. The estimation method - ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
for RTT is the same as the one in [23]. L e ®

« If a double ack IS_ received, i.e. _the Same_ packet I!‘?’g. 1. A single user on a single link witRT'T' = 10, 50, and200ms.
acknowledged twice by the receiver, then it retransis version of GBCC has no slow start mechanism.
mits the packages beginning from the last acknowl-
edged packet number. We note that, thisback n  We next explore the interaction between the GBCC and
scheme [22] is implemented for its simplicity. InTCP on a single bottleneck link wittDms delay. GBCC
fact, better mechanisms with receiver window size TCP-friendly as it can be observed from Figure 2. The
being larger than one exist. fluctuation in the first two seconds is due to the slow start

o The sender updates the window size accordimgechanism which requires a packet loss for termination.
to (25) using the current value of queueing delain the final simulation on a single bottleneck link, there are
which is taken as the difference between the curre?® identical users with parameters= 50, © = 400, 000,
RTT and base RTT. The window siz8/ > 0, is and delays are randomly chosen betweers and30ms
strictly positive. according to a uniform distribution. We observe flows of

« If no ack packet is received within, s&RTT, then 3 specific users with respective delay=ais, 15ms, and
sender retransmits previous packets beginning frasims in Figure 3. The system again converges to the

Flow Rate (bps)
>
—
T
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GBCC versus TCP at a Bottleneck Node
T T T T T

— — TCP Flow
—— GBCC Flow
—— Total Flow

Flow Rate (bps)

5
Time (seconds)

Fig. 4. ANamscreenshot of the simple network. Links are symmetric,
and have a capacity 60\ bps with 20ms delay.

Fig. 2. GBCC flow versus TCP flow on a bottleneck link witbms
delay.

GBCC versus TCP at a Bottleneck Node
T T T T T

— — TCP Flow
—+— GBCC Flow
—— Total Flow

Flow Rate (bps)

5
Time (seconds)

Fig. 3. Three out of 20 flows with various delay& s, 15ms, and
50ms) sharing & M bps bottleneck link.

Fig. 5. Flows of users 2, 3 and total flow at node 2 are observed for 15
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seconds.

equilibrium, however similar to TCP, GBCC favors flows
with smaller RTT as it is a window-based scheme.

The following simulation is done with three users on
a simple three node network topology with twa/bps
links of 20ms delay as shown in Figure 4. While flows
of user 1 and 2 pass through links 1 and 2 respectively,
the flow of user 3 passes through both links. Cost param-
eters are chosen as= 30 andu = 400,000. User 3 is
‘charged’ more than others through summation of queue-
ing delays as s/he uses resources on both links. Thus,
having the same utility parameter as others, s/he obtains
a smaller fraction of the bandwidth. Figure 5 depicts the
flow rates of user 2 and 3 as observed in node 2.

Finally, we simulate 10 users with various routes and
experiencing various delays on a seven node arbitrary
topology network (Figure 6) with all links except the on
between nodes 5 and 6 having capacitypdf bps each.
The link between nodes 5 and 6, on the other hand, has

Hle Views Analysis

/home/alpcan/ns-allinone-2.1b9/ms-2.1b9/tcl/ex/gbccsim/out.nam J

4578266 | Step: 1.3ms
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%ig. 6. ANamscreenshot of the general (arbitrary) topology network.



x 10° 3 Selected Flows in General Network Topology
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Flow Rate (bps)

11

on a single bottleneck link and on various general network
topologies with non-negligible propagation delays. These
simulations reveal that the implemented scheme not only
confirms the theoretical results but is also TCP-friendly.
There still remain a few open issues and many direc-
tions for future research. For example, there is still am-
ple room for improvement in the implementation of the
congestion control scheme, such as increasing the re-
ceiver window size and fine tuning the slow start mech-
anism. Another topic for further study would be to devise
a methodology for choosing the pricing parameteiYet
another direction for future research would be the deriva-

I
10

0 I
0 5 15

Time (seconds)

tion of improved (less restrictive) sufficient conditions on

the maximum delay allowable in a general network, to en-

Fig. 7. Three flows from nodes 7, 8, and 9 to node 6 are shown where
these users are symmetric and have the following cost parameters:
30 andu = 200, 000.

a capacity ofl0Mbps. The links have equal propagation
delays of5ms each, except the links to nodes 7, 8, andl]
9, which have delays dims, 10ms, and25ms, respec-
tively. The users at nodes 7, 8, and 9 all have connectio

to node 6 and each experiences a different propagation ch]-
lay. Figure 7 shows only the flows of these three users 3]
measured at node 6. We note that although the number
of links in this simulation is equal to the number of users,
the number of bottleneck links that affect the equilibrium,,
flows is actually smaller. Hence, the routing matAixis

of full row rank.
(5]

VII. CONCLUSION
6
In this paper, we have developed and analyzed a co%-]

gestion control game with a linear pricing scheme based
on variations in the queueing delay experienced by thl
users. User demand for bandwidth is captured by a broad
class of utility functions that are strictly increasing and
strictly concave. The objective function for each user ingj
this noncooperative game is defined as the difference be-
tween the pricing and utility functions. Using a network
. . . 9]

model based on fluid approximations and through a ré-
alistic modelling of queues in the network, we have es-
tablished the existence of a unique equilibrium, and tim]
global stability of the equilibrium point for a general net-
work topology. We have also provided sufficient condi-
: o . 11]
tions for system stability on a bottleneck link shared
multiple users under non-negligible propagation delaysy12]

We have implemented and simulated a simple, window-
based, end-to-end congestion control schenresi@net-
work simulator based on the theoretical foundations of tHe!
congestion control game. We have investigated several
properties of the scheme developed through simulations

Sure stability of the overall system.
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