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Abstract. The power grid, on which most economic activities rely, is a
critical infrastructure that must be protected against potential threats.
Advanced monitoring technologies at the center of smart grid evolution
increase its efficiency but also make it more susceptible to malicious at-
tacks such as false data injection. This paper develops a game-theoretic
approach to smart grid security by combining quantitative risk man-
agement with decision making on protective measures. Specifically, the
consequences of data injection attacks are quantified using a risk assess-
ment process based on simulations. Then, the quantified risks are used
as an input to a stochastic game model, where the decisions on defensive
measures are made taking into account resource constraints. Security
games provide the framework for choosing the best response strategies
against attackers in order to minimize potential risks. The theoretical
results obtained are demonstrated using numerical examples.
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1 Introduction

A power grid is a critical infrastucture that must be protected against poten-
tial threats. As it evolves to a “smart grid” with better efficiency, however,
the security concerns increase due to emergence of new attack vectors exploit-
ing evolving system complexity. While security is an important issue for grid
operators, real world constraints such as resource limitations necessarily force
adoption of a risk management approach to the problem. Protective measures
are usually taken based on a cost-benefit analysis balancing available defensive
resources with perceived security risks. This paper investigates the important
class of false data injection attacks to smart grids which directly affect the oper-
ation of automatic generation control systems and potentially lead to blackouts.
The problem is formulated first as one of quantitative risk management which in
turn is used as an input to a stochastic (Markov) security game. The resulting
game analysis helps smart grid operators to make informed decisions on their
security strategies while taking into account their resource constraints. Although
the paper focuses on a certain type of attack and subsystem, the approach can be
applied to similar security problems in smart grid, and hence, can be extended
to develop the foundation of a systematic framework for smart grid security.
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A simple but elegant definition of risk is “the probability and magnitude of
a loss, disaster, or other undesirable event” [14]. Security risk analysis can
be defined as “the process of identifying the risks to system security and de-
termining the likelihood of occurrence, the resulting impact, and the additional
safeguards that mitigate this impact” [27]. Most smart grid standards and guide-
lines (e.g., IEC 62351-1, NISTIR 7628) identify risk assessment as a critical part
of a security framework. For instance, the Australian Government advocates the
use of the Australian and New Zealand Standard for Risk Management (AS/NZS
ISO 31000:2009) by owners and operators of critical infrastructure [4]. However,
the standard ISO 31000:2009 is “not mathematically based”, and has “little to
say about probability, data, and models” [19]. Comprehensive risk assessment is
hampered by the following trends:

Stealthy attacks A zero-day vulnerability is a vulnerability exploited by some
malware before or on the same day it is known by the vendor. Stuxnet–the
world’s first computer worm that targets programmable logic controllers–exploited
as many as four zero-day vulnerabilities, allowing it to spread undetected by com-
mercial antimalware software. In a 2011 report, McAfee found the electric sector
has the highest occurrence of Stuxnet among the power, oil, gas and water sec-
tors [5]. Stuxnet is a classic example of a malware developed with nation-state
resources. The discovery of Stuxnet successors Duqu and Flame suggests com-
prehensive risk assessment must go beyond detectable attacks that target ICT
systems to stealthy attacks that target control systems.

Forever-day vulnerabilities Power control systems were not originally de-
signed to be connected to the Internet, and thus lack many of the security
controls found on corporate IT systems. Some experts estimate current control
system security to be a decade behind enterprise IT security [28]. As more power
control systems become connected to corporate networks, it is increasingly pos-
sible for Internet-originated attacks to penetrate power control systems through
corporate networks. The bad news is that control system vendors are refusing
to patch legacy systems, giving rise to “forever-day vulnerabilities” [12].

Complexity Power grids are complex systems, and the global drive toward
smart grids is making existing systems even more complex. The 47 actors and
137 inter-actor interfaces identified in NIST’s logical reference model of a smart
grid [26] present a large attack surface with no shortage of entry points. Risk
assessment methodologies that rely on expert judgements, when no one expert
can claim full unbiased knowledge of even a small part of the system, are error-
prone. To assess and mitigate the security risks faced by power control systems,
a systematic approach that is based on empirical evidence is clearly needed.

Security games provide an analytical framework for modeling the interac-
tion between malicious attackers, who aim to compromise smart grid, and oper-
ators defending them. The “game” is played on smart grids, which are complex
and interconnected systems. The rich mathematical basis provided by the field of
game theory facilitates formalising the strategic struggle between attackers and
defenders for the control of the smart grid [1]. Utilising the risk framework and
some of the concepts of earlier studies [7, 24], this work applies game theory to
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the modeling of attacks on and defenses for a critical power system component
called automatic generation control.

Power system analysis 
and simulations

Quantitative 
risk analysis

Markov 
games

Fig. 1. An overview of the methodology adopted in this paper.

The main contributions of this work include

– Assessment and identification of risks faced by the automatic generation
control system, which constitute an important part of smart grid.

– A discussion of the security threat model, potential attacks, and counter-
measures.

– A quantitative risk model capturing the probability and magnitude of secu-
rity threats faced by the automatic generation control system due to false
data injection attacks.

– A stochastic (Markov) security game for analysis of best defensive actions
building upon the risk analysis conducted and under resource limitations.

– A numerical study illustrating the framework developed.

The rest of the paper is organized as follows. Section 2 states the problem of
assessing the cyber security risks of automatic generation control, an essential
power system component. Section 3 defines the threat model. Section 4 discusses
attack and defense actions within this threat model. Section 5 presents our game
and risk model. In Section 6, we apply the game and risk model to automatic
generation control, and present our simulation results. Section 7 discusses related
work, and finally Section 8 concludes this paper.

2 Problem statement: automatic generation control
(AGC)

The most critical aspect of a power system is stability, and one of the most
important parameters to stabilize is frequency. This is because the frequency
of a power system rises/falls with decreased/increased loading. Failure to stabi-
lize frequency may lead to damage to equipment (utility’s or end users’), harm
to human safety, reduction of or interruption to electricity supply. Violation of
frequency stability criteria is one of the main reasons for numerous power black-
outs [6]. Less tangible secondary impacts, including loss of data or information
and damage to reputation, are equally undesirable.

The frequency control system operates at three levels. Primary frequency
control takes the form of a turbine governor’s speed regulator, a proportional
controller of gain 1/R, where R is the droop characteristic (drop in speed or
frequency when combined machines of an area change from no load to full
load). Secondary frequency control is for correcting the steady-state error residue
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left by the proportional controller, and may take the form of an integral con-
troller; in which case, primary and secondary frequency control form a parallel
proportional-integral controller, capable of driving frequency deviations to zero
whenever a step-load perturbation is applied to the system. Tertiary frequency
control is supervisory control based on offline optimizations for (i) ensuring ade-
quate spinning reserve in the units participating in primary control, (ii) optimal
dispatch of units participating in secondary control, (iii) restoration of band-
width of secondary control in a given cycle. While primary and secondary control
respond in seconds and tens of seconds respectively, tertiary control is usually
manually activated minutes after secondary control. Our study concerns only
the dynamics of frequency control, and hence does not consider tertiary control.

In an interconnected system with two or more control areas, in addition to
frequency, the generation within each area must also be controlled to maintain
scheduled power interchanges over tie lines (inter-area transmission lines). The
control of both frequency and generation is called load-frequency control. Within
each area, each generation unit has primary control, while secondary control is
centralized. Together, decentralized primary control and centralized secondary
control achieve the purpose of load-frequency control. Automatic generation con-
trol (AGC) is load-frequency control with the additional objective of economic
dispatch (distributing the required change in generation among units to mini-
mize costs) [18, 38]. However, AGC is sometimes referred to as automated (vs
manual) load-frequency control [3], or even the entire frequency control system
itself [23]. AGC is an indispensable part of the “central nervous system” of a
power grid called the energy management system (EMS), and possibly the only
automatic closed loop between the IT and power system of a control area [10];
because of this, it is subject to attacks propagated through the IT system. A
detailed threat model is given in Section 3.

When system frequency deviates from the nominal frequency (60 Hz for
Americas, 50 Hz for most other parts of the world) by a certain threshold,
overfrequency and underfrequency protection relays execute tripping logic de-
fined by a protection plan that varies from operator to operator. Assuming a
nominal frequency of 60 Hz, overfrequency relays start tripping thermal plants
when frequency rise exceeds 1.5 Hz [22, 23], but these relays are usually set to
tolerate deviations due to post-fault transients for short periods of time. Under-
frequency relays perform underfrequency load shedding (UFLS), which is the sole
concern of our study because it results in directly measurable revenue loss. For
our study, we adopt Mullen’s UFLS scheme [25]. In Algorithm 1, ∆f denotes

frequency deviation. ∆Psafe
def
= −0.3/R, where R is the droop characteristic of

the generators. ∆Pest
def
= ∆Pm − ∆Pe, i.e., change in mechanical power minus

change in electrical power.

Algorithm 1: Mullen’s UFLS scheme [25]
Sampling time: 0.05 s. Nominal frequency: 60 Hz. Not for overfrequency protection.

if timer == 0 then
if ∆f ≤ −0.4 and ∆Pest +∆Psafe > 0 then

timer ← 1 // Level-1 alarm
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Psched ← ∆Pest +∆Psafe

else if −0.4 < ∆f ≤ −0.35 and ∆Pest +∆Psafe > 0 then
timer ← 2 // Level-2 alarm
Psched ← ∆Pest +∆Psafe

else if UFLS is in effect and −0.35 < ∆f ≤ 0 for some time then
Reconnect most recently shed loads

end
return

end
if timer > 0 then

timer ← timer - 1
if timer == 0 then

Shed Psched

end
end

Our study is based on the two-area AGC system model and associated
simulation parameters in Fig. 2, which incorporates a simple turbine-governor
model [6]. The automatic generation controller is an integral controller of gain
KAGC. We note that design of AGC is an established area with designs dating
back to the 1950s; [15] alone surveys over a hundred designs. A simple integral
controller seems to be a logical starting point. Following convention, we model
the AGC system as continuous-time. We set the nominal frequency to 60 Hz. The
demand time series demand1 and demand2 are the demand profiles of Victoria on
4-5 June 2012 and of South Australia on 7-8 June 2012 respectively, provided by
the Australian Energy Market Operator. The UFLS relays in both areas execute
Algorithm 1 every 0.05 s. Once the system frequency has stabilized for at least
30 s, the UFLS relays reconnect the shed loads in the reverse order they were
shed. The maximum sheddable loads are capped at 4 p.u. and 1 p.u. for areas
1 and 2 respectively. “p.u.” stands for “per unit” and is simply the ratio of an
absolute value in some unit to a base/reference value in the same unit. The base
load for both areas is taken to be 1000 MW (hence 4 p.u. is 4000 MW in this
case).

3 Threat model

Access to a control system is typically enabled through a virtual private net-
work (VPN) [37]. As VPN is usually the only access control mechanism [33],
gaining unauthorized access to a control system is no different from infiltrating
any IT network. Threats to control systems are well documented [32]. VPNs
offer no resistance to insider attackers who possess the required access rights,
either in the form of passwords or physical access to SCADA network terminals.
An often-used attack vector by outsider attackers is a Trojan a system oper-
ator unknowingly downloads when he/she visits a malicious web site or opens
an infected email attachment. By logging keystrokes, stealing private keys, etc.,
the Trojan captures the necessary access credentials for the attacker. Based on
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LFC / AGC system model from Bevrani's "Robust Power System Frequency Control," pp. 23-25 

Delta tie-line power

powergui

Continuous

dPm
dPe
df

dPl

UFLS relay
df
dPe
dPm

dPl

1

Tt2.s+1

Turbine

1

Tt1.s+1

System inertia

1

2*H1s+D1

-K-

Speed
regulation

-K-

-K_AGC2

s

Simple AGC

-K_AGC1

s

1

2*H2s+D2

Injector

inout

1

Tg2.s+1

Governor

1

Tg1.s+1

-K- -K-

demand2

demand1

Delta f

2*pi*T12

s

Defender
in

flagdf

B2

Bias
factor

B1

Attacker

dfout
flag

Symbols Definition Symbols Definition
H,D Inertia constant, damping coefficient Tg, Tt Time constants for turbine governor
R Droop characteristic B Frequency bias factor
KAGC Gain of secondary frequency control T12 Tie-line synchronizing coefficient

KAGC i (s) Di (p.u./Hz) 2Hi (p.u. s) Ri (Hz/p.u.) Tgi (s) Tti (s) Bi (p.u./Hz)

i = 1 0.3 0.015 0.1667 3.00 0.08 0.40 0.3483
i = 2 0.2 0.016 0.2017 2.73 0.06 0.44 0.3827

Fig. 2. Simulink representation and simulation parameters for a two-area AGC system
model based on Bevrani’s [6, Fig. 2.10 and Table 2.2]. The top area is labeled area 1.

information from multiple sources [9, 33, 37, 38], Fig. 3 shows the typical com-
munication architecture of a control center and a substation. Some authors [34]
equate the compromise of an entire control center or substation to the successful
cracking of a VPN access password and the penetration of an Internet-facing
firewall in Fig. 3; this strong attacker model is not entirely unrealistic, but our
goal is to investigate the strategy of an attacker that has successfully penetrated
the VPN but whose actions within the AGC system are bounded by several
resource constraints. We assume the following resource constraints:

– The attacker cannot directly trip generators, or transmission lines (by open-
ing circuit breakers).

– The attacker cannot tamper with turbine governors.
– The attacker cannot tamper with underfrequency load shedding (UFLS) re-

lays. Some commercial relays (e.g., SEL-387E) have an integrated frequency
meter, and are thereby not subject to false frequency data injection attacks.

– The attacker cannot tamper with the EMS.
– The attacker can reduce but not block the input/output of the EMS.

Without the above constraints, it is a trivial exercise for any attacker that has
successfully penetrated the VPN to trigger cascading failures across the power
grid. It is therefore conceivable that an energy provider would make protecting
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Fig. 3. Accessibility of a power system control center and substation from the Internet.
AGC is executed on one of the EMS servers. In our threat model, an attacker can feed
the AGC software with false frequency data.

its generators, circuit breakers, turbine governors, UFLS relays, and EMS its
foremost priority. Despite the above constraints, an attacker can forge and send
false frequency data to the AGC software executing on one of the EMS servers,
by masquerading as one of the relays (except the UFLS relays) or meters in the
substation (see Fig. 3). In the spirit of stealthy attacks as embodied by Stuxnet,
Duqu and Flame, it is also conceivable that a persistent attacker would adopt this
subtle and stealthy strategy. It is up to the AGC software to detect this attack.
False data attacks on the speed regulator (primary frequency control) are not
considered because the machine is usually directly wired to a frequency sensor
without going through a communication network. In the next section, several
potential injection attacks, defense actions and their effects are discussed.

4 Attacks and defense actions

It is impossible to simulate all data injection attack scenarios, but there are three
basic attack types on which more sophisticated attacks can be based.

Constant injection If an attacker injects a constant false value, then the it
effectively disables the integral control loop, causing the system frequency to
converge to a non-nominal frequency. If the false value is positive, then the sys-
tem will settle on a below-nominal frequency, causing loads to be shed; otherwise,
the system will settle on an above-nominal frequency, causing generators to be
tripped. Both cases lead to cascading failures.

Overcompensation If an attacker injects a false frequency k times the true
frequency, where k is a large positive number, then it effectively causes overcom-
pensation by the integral control loop, and consequently unstable oscillations. As
the system frequency sweeps past the overfrequency and underfrequency thresh-
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Fig. 4. An example of “overcompensation” attack, where the attacker substitutes ∆f1
with 8∆f1 as frequency input to the area-1 integral controller. As long as the attack
persists, neither generator tripping nor load shedding helps stabilize the system.

olds, generators will be tripped and loads will be shed, followed by cascading
failures. Fig. 4 shows the result of an attack using k = 8.
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Fig. 5. Negative compensation attack: for
large enough k (e.g., 1.2), the system fre-
quency → +∞.

Negative compensation If an attacker injects a false frequency −k times the
true frequency, where k is a positive number, then it effectively reverses the
intended effect of the integral control loop, causing the system frequency to
diverge from the nominal frequency (see Fig. 5). This attack directly triggers
generator tripping, but not load shedding.

For our study, we concentrate only on the overcompensation attack, as it in-
flicts maximum damage in terms of triggering both load shedding and generator
tripping (although we do not simulate the latter). It is also harder to detect than
constant injection. Here, we outline some defenses against the overcompensation
attack. The first observation is that we can constrain the attack by limiting
the frequency input to the integral controller to [−4.5, 3.5] Hz (i.e., passing the
input through a saturation filter), because at ∆f = −4.5 Hz, not only should
all sheddable loads have been shed, but also all generators would be tripped; at
∆f = 3.5 Hz, all generators would be tripped as well [22]. A common security
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measure is redundancy. Multiple frequency meters of different builds can be in-
stalled, so that the likelihood of all meters being compromised is small and the
AGC software has a non-zero chance of receiving genuine frequency data.

There are unlimited ways to improve upon the overcompensation attack to
counter the above defenses. Correspondingly, there are unlimited ways to detect
these improved attacks with varying accuracy, and certainly there are more ad-
vanced controllers that are less susceptible to these attacks. Nevertheless, our
interest is not on the design of attacks, defenses or controller, but on the mod-
eling of system risk dynamics under the actions of the attacker and defender.

5 Game and risk model

Our model is based on Alpcan and Başar’s framework [1]. The concept of risk
states is central to this model. A system has a set of states, and a different level
of risk is associated with each state. In this work, we define risk as the product of
the probability of a successful attack and the resultant shed load. Clearly under
this definition, risk ranges from 0 to the maximum sheddable load for all areas
combined, but we partition this risk space into only two states: s0 where risk is
zero (no load is shed), and s1 where risk is nonzero (some load is shed). We model
the state to evolve probabilistically according to a defined stochastic process
with the Markov property. Accordingly, we model the interactions between an
attacker and a defender using stochastic or Markov security games.

As a general basis for Markov security games, consider a 2-player (attacker vs.
defender) zero-sum Markov game played on a finite state space, where each player
has a finite number of actions to choose from. Let the attacker’s action space

be AA def
= {a1, . . . , aNA

}, the defender’s action space be AD def
= {d1, . . . , dND

},
and the state space be S def

= {s1, . . . , sNS
}. It is assumed that the state evolves

according to a discrete-time finite-state Markov chain which enables utilization of
well-established analytical tools to study the problem. Then, the state transitions
are determined by the mapping M : S × AA × AD → S. Let pS(t) be the
probability distribution on the state space S, i.e.,

pS(t)
def
=
[
Pr[s(t) = s1] Pr[s(t) = s2] · · · Pr[s(t) = sNS

]
]T
,

where t ≥ 1 denotes the discrete time (stage) of the repeated Markov game. The
mapping M can then be represented by the NS × NS state transition matrix
M(a, d) = [Msi,sj (a, d)]NS×NS

, which is parameterized by a ∈ AA and d ∈ AD,
such that

pS(t+ 1) = M(a, d)pS(t). (1)

The matrix entry Msi,sj (a, d) represents the probability of state si transitioning
to state sj under attacker action a and defender action d.

The mappingM can alternatively be parameterized by the state to obtain as
many zero-sum game matrices G(s) as the number of states, each of dimension
NA × ND. In other words, given a state s(t) ∈ S at a stage t, the players
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play the zero-sum game G(s(t)) = [Ga,d(s(t))]NA×ND
. The matrix entry Ga,d(s)

represents the attacker’s gain from risk state s by taking action a when the
defender action is d. Using our definition of risk in this work, Ga,d(s) is the
total load shed in state s under attacker action a and defender action d. By
definition, G(s0) = 0. In zero-sum Markov games, the attacker’s gain (loss)
equals the defender’s loss (gain).

The attacker’s strategy is defined as a probability distribution on AA for a

give state s, i.e., pA(s)
def
=
[
Pr[a(s) = a1] · · · Pr[a(s) = aNA

]
]T

. The defender’s
strategy is similarly defined. For the zero-sum Markov game formulation here,
the defender aims to minimize own aggregate cost, Q̄, in response to the attacker
who tries to maximize it. The reverse is true for the attacker due to the zero-sum
nature of the game. Hence, it is sufficient to describe the solution algorithm for
only one player, which is the defender in our case.

The game is played in stages over an infinite time horizon. As in Markov
Decision Process, the aggregate cost of the defender at the end of a game is the
sum of all realized stage costs discounted by a scalar factor α ∈ [0, 1):

Q̄
def
=

∞∑
t=1

αtGa(t),d(t)(s(t)), a(t) ∈ AA, d(t) ∈ AD, s(t) ∈ S, (2)

where Ga(t),d(t)(s(t)) is the (a(t), d(t))-th element of the stage-t game matrix
G(s(t)). The defender can theoretically choose a different strategy pD(s(t)) at
each stage t of the game to minimize the final realized cost Q̄ in (2). Fortunately,
this complex problem can be simplified significantly. First, it can be shown that a
stationary strategy pD(s) = pD(s(t)),∀t is optimal, and hence there is no need to
compute a separate optimal strategy for each stage. Second, the problem can be
solved recursively using dynamic programming to obtain the stationary optimal
strategy (solving a zero-sum matrix game at each stage). Unlike Markov Decision
Process, the optimal strategy can be mixed, i.e., stochastic for each state s. At
a given stage t, the optimal cost Qt(a, d, s) (called Q values) can be computed
iteratively using the dynamic programming recursion

Qt+1(a, d, s) = Ga,d(s) + α
∑
s′∈S

Ms,s′(a, d) · min
pD(s′)

max
a

∑
d∈AD

Qt(a, d, s
′)pDd (s′),

(3)
for t = 0, 1, . . . and a given initial condition Q0. In (3), pDd (s′) is the element of
pD(s′) that corresponds to d. (3) converges to the optimal Q∗ as t→∞.

There are multiple ways to implement (3). The algorithm called value itera-
tion is prescribed here due to its scalability. To describe the algorithm, we first
split (3) into two parts:

V (s) = min
pD(s)

max
a

∑
d∈AD

Qt(a, d, s)p
D
d (s), (4)

Qt+1(a, d, s) = Ga,d(s) + α
∑
s′∈S

Ms,s′(a, d)V (s′), t = 1, 2, . . . (5)



Security Games for Automatic Generation Control in Smart Grid 11

(4) can further be formulated as a linear program:

min
pD(s)

V (s)

s.t.V (s) ≤
∑
d∈AD

Qt(a, d, s)p
D
d (s),∀a ∈ AA, (6)

pDd ≥ 0,
∑
d

pDd = 1,∀d ∈ AD.

Algorithm 2: The value iteration algorithm

Given arbitrary Q0(a, d, s) and V (s)
repeat

for a ∈ AA and d ∈ AD do
Update V and Q according to (4) and (5)

end for
until V (s)→ V ∗, i.e., V (s) converges

The strategy pD(s),∀s ∈ S com-
puted from (6) is the minimax
strategy w.r.t. Q. The fixed points
of equations (4) and (5), V ∗ and
Q∗, lead to the optimal mini-
max solution for the defender. The
value iteration algorithm, using
(4), (5) and (6) to find V ∗ and Q∗,
is given in Algorithm 2.

6 Security game and simulation results

A reasonable definition of risk is the product of the probability of a successful
attack and the resultant shed load. We define two risk states, i.e., we partition the
relative risk probability simplex into two risk regions: s0 where no load is shed,
and s1 where some load is shed. In the absence of attacks or large disturbances,
the system only operates in state s0.

In our security game, the AGC software reads N consecutive samples alter-
nately from two frequency meters of different builds (one is more secure than
the other). N consecutive samples from one meter constitute one session/stage
(see Fig. 6(a)). The attacker can perform the following actions:

a1 Send N samples, N/2 of which are false.
a2 Send N samples, N of which are false.

a1 and a2 are two special cases of the general attack action space AA = {
Send N samples, i of which are false (i = 1, . . . , N)}. We consider 2 out of
N possible attack actions merely for numerical simplicity. The attacker sets a
false sample to -4.5 Hz if the true ∆f is negative, or 3.5 Hz if the true ∆f is
positive. This implements the overcompensation attack, and takes into account
the saturation filter in Section 4. Correspondingly, the defender can perform the
following actions:

d1 Upon collecting N samples, run Detection Algorithm 1 (to be defined later).
If detection result is positive, disinfect the meter (e.g., by refreshing its
firmware, cryptographic keys and so on). Disinfection is assumed to complete
within the time of one session (see Fig. 6(a)).
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Fig. 6. (a) A session/stage in our security game. (b) Plot of (7) and (8) given N = 20,
α1 = 0.2, β1 = 0.8127, α2 = 20, β2 = 0.5203.

d2 Upon collecting N samples, run Detection Algorithm 2 (to be defined later).
If detection result is positive, disinfect the meter.

Detection Algorithms 1 and 2 are hypothetical algorithms with attack detection
probabilities (true positive rates) of

1− α1(x/N)β1 , (7)

and 1/[1 + e−α2(x/N−β2)] (8)

where x is the number of malicious samples among N samples; α1, β1, α2 and
β2 are constants. Fig. 6(b) plots the detection probabilities for a set of sam-
ple parameters. These definitions are contrived so that Detection Algorithm 1
emulates a clustering-based anomaly detection algorithm, whereas Detection Al-
gorithm 2 emulates a threshold-based algorithm. Detection Algorithm 1 is good
for low concentration of malicious samples, while Detection Algorithm 2 is good
for high concentration of malicious samples. It is assumed that the defender can
only run one Detection Algorithm at the end of a session due to time constraint.
We emphasize that although we consider two attack actions and two defense ac-
tions for numerical simplicity, our approach can be applied to any finite number
of attack and defense actions.

The purpose of simulations is to get the state transition matrix M(a, d) =
[Msi,sj (a, d)]NS×NS

, and the game matrix G(s) = [Ga,d(s(t))]NA×ND
.Msi,sj (a, d)

is readily obtained by fixing attacker action at a, defender action at d, and mea-
suring the frequency of encountering states si and sj at the beginning and end
of each session respectively. By our definition of risk, G(s0) = 0. To obtain
Ga,d(s1), we fix attacker action at a, defender action at d, and measure the total
load shed during the combined duration of s1. Suppose the total energy shed is
Es1 and the combined duration of s1 is Ts1 , then Ga,d(s1) = Es1/Ts1 . In other
words, G(s1) represents the average power shed in state s1.

To simulate the above security game, we use the system parameters in Fig. 2.
Since AGC signals are transmitted to the generating plant once every 2 to 4 sec-
onds [18], we set the sampling rate of the “Defender” and “Attacker” blocks to
2 seconds. Attacks are simulated to start at time 100 s. We set N = 20, i.e., 20
samples are read from a meter in each session. The parameters of the Detection
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Fig. 7. A sample simulation snapshot spanning two sessions (20 samples per session, 2
s per sample) from time 580 s to 620 s, when attacker action and defender action are
fixed at a2 and d2 respectively. From 580 s to 600 s, the system consumes false samples
from compromised Meter 1, and transitions from state s0 to state s1. From 600 s to 620
s, the system consumes false samples from compromised Meter 2, and stays in state
s1.

Algorithms are set according to Fig. 6(b). After a meter is detected to be com-
promised and disinfected, it will become compromised again after some time;
Meter 1 and Meter 2 take 4 sessions and 20 sessions to compromise respectively.
Using MATLAB/Simulink, each simulation is conducted for 30 virtual minutes.
Fig. 7 shows a simulation snapshot spanning two sessions. The obtained M and
G are fed into Algorithm 2. Fig. 8 shows the simulation results, from which the
following can be observed:

Effect of sampling rate Since AGC signals are usually transmitted to the
generating plant once every 2 to 4 seconds [18], we initially set the AGC sampling
rate to 0.5 Hz. A lower sampling rate means a malicious sample will have longer
effect on the controller, so when we increase the AGC sampling rate to 1 Hz,
the amount of load shed drops conspicuously, as evidenced by the lower-valued
G(s1) (less gain for the attacker). Thus, besides improving control precision, a
sufficiently high sampling rate provides a good buffer against attacks. Fig. 8(f,
g, h) shows that except for low discount factors, increasing the sampling rate
(diminishing the attacker’s gain) tend to drive both attacker and defender to
adopt a mixed strategy.

Effect of the discount factor The discount factor α is a logical construct for
de-emphasizing the payoff of elapsed stages; it is also a mathematical construct
for ensuring convergence. Fig. 8(f, g, h) shows that at a higher sampling rate,
varying the discount factor has more impact on defender strategy than on at-
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AGC sampling rate: 0.5 Hz
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Fig. 8. Attack and defense strategies organized according to AGC sampling rate and
discount factor α.

tacker strategy; and the higher the discount factor, the more often the defender
is driven to use action d1 instead of d2.

7 Related work

Smart grid cyber security is an emerging area. A comprehensive summary of the
challenges confronting this area is provided by Wei et al. [36]: (i) automation
components run communication protocols and proprietary operating systems
that are designed for connectivity/monitoring/control functionality and not se-
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curity; (ii) automation components have limited computational resources due to
manufacturing costs and the fact they are used over a long of time exacerbates
these resource constraints over time; (iv) resource utilization for performance
conflicts with resource utilization for more security.

Substantial research effort is still being dedicated to exploring cyber attacks
and their effects on power grids. Stamp et al. [31] develop a cyber-to-physical
modeling approach called Reliability Impacts from Cyber Attack, for quantifying
the degradation of system reliability for a given probability of cyber attack.
Several metrics are investigated, including frequency of interruption, loss of load
expectancy, load curtailed per interruption, etc. Kundur et al. [16, 17] present
two simulation studies – one on a single-generator system, and another on the
IEEE 13-bus test system. The studies focus on the effects of attacks by injecting
three levels of errors into a single sensor in the systems. Esfahani et al. [10, 11]
design elaborate schemes for controlling maliciously injected AGC output signal
to maximally disrupt a grid. Our focus on AGC is in a way inspired by their work.
Injecting an AGC output signal potentially requires the attacker to masquerade
as an automatic generation controller to a turbine governor, whereas injecting an
AGC input signal requires masquerading as a meter to an automatic generation
controller. So instead of the AGC output signal, we focus on one of the AGC
input signals (i.e., frequency deviation) because from an attacker’s perspective,
compromising a meter is potentially lower-cost than compromising an automatic
generation controller.

Risk assessment has been garnering a lot of attention lately. We note that
some authors erroneously refer to risk assessment synonymously as vulnerability
assessment, which is a different concept [27]. Attack trees or attack graphs is
a common starting point for most work in this area. An attack tree represents
attacks against a system in a tree structure, with the goal as the root node and
different ways of achieving that goal as leaf nodes. Cheminod et al. [8] develop a
software tool for generating specialized attack trees called attack and fault prop-
agation graphs. Ten et al. [34] propose a framework based on attack trees for
evaluating system security. They focus on attacks originating from substations
connecting to the control center through a VPN. They limit cyber intrusions to
firewall penetration and password cracking, singling out password policies and
port auditing as the two most important security measures – these assumptions
are used in other work by the same research team [30,33]. Their framework de-
fine three vulnerability indices: the system vulnerability index is the maximum
of scenario vulnerability indices, which are products of leaf vulnerability indices,
which in turn depend on subjective definitions of port vulnerability and password
strength. Liu et al. [20] take an attack tree as input, and assign a “difficulty level”
to each action on the tree using Analytic Hierarchy Process. Their methodology
produces a vulnerability factor, an artificial measure of the success probability
of an attack. Liu et al. [21] also use Analytic Hierarchy Process–in their case–for
assigning weights to performance and security criteria (e.g., “packets burst in
local network”). Analytic Hierarchy Process is a decision making methodology
that is often applied to risk management, but for its reliance on subjective scor-
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ing and failure to satisfy several statistical axioms (e.g., transitivity), the risk
management community is divided regarding its validity [14]. In comparison, our
work uses only empirical evidence.

The limitation of attack trees is not unrecognized. Sommestad et al. [29] pro-
pose defense graphs as an alternative to attack graphs, to take into account the
countermeasures already in place within a system. They model defense graphs
using influence diagrams, which are essentially Bayesian networks enhanced with
indicators that express beliefs on likelihood values. The output of their assess-
ment methodology is the expected loss associated with a successful attack. Hahn
et al. [13] propose privilege graphs to model the privilege states in a system and
the paths exploitable by an attacker. The essence of their proposal is an algo-
rithm for computing an exposure metric, that takes into account (i) the number
of attack paths through the security mechanisms protecting a target asset, and
(ii) the path length representing the effort required to exploit a path.

Ten et al. [33] model attacks using stochastic Petri Nets, which encapsulate
the probability and risk of attacks. They define the metric system vulnerability
which is the maximum of all scenario vulnerability values, and the metric im-
pact factor w.r.t to a substation disconnected by a successful attack. Sridhar
et al. [30] use stochastic Petri Nets to model computers, firewalls and intrusion
protection systems. To assess the steady-state impact of attacks on the power
system itself, they present the impact study of six coordinated attack scenarios,
where coordination is in the sense of targeting multiple power system compo-
nents at the same time. They define risk as the product of the probability of a
successful attack and the resultant shed load; we adopted this definition of risk.
Their observation that directly tripping a generator does not always cause more
damage than tripping a line coincides with Wang et al.’s [35]. With the exception
of [30], most risk assessment work discussed so far is ICT-centric, and does not
consider the impact of cyber attacks on the power system itself. In comparison,
our work involves the detailed modeling and simulation of attacks on the AGC
system.

8 Conclusion and future work

Risk assessment for power grids has been identified as a critical area by the
public sector, industry and academia. However, existing risk management stan-
dards such as ISO 31000:2009 are more about general principles and guidelines
than concrete mathematical techniques. In this work, we identify and assess
the risks faced by a critical power system component called automatic genera-
tion control (AGC). Our discussion of potential attacks and countermeasures is
based on an explicit security threat model. We propose a quantitative risk model
capturing the probability and magnitude of security threats faced by the AGC
system due to false data injection attacks. Building upon the risk analysis, we
model attacker-defender interactions using stochastic (Markov) security games
to analyze the best defensive actions under resource constraints. The developed
framework is illustrated with a detailed AGC model and simulation results.
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For future work, we plan to use more precise models for AGC, turbine gov-
ernor, generator and underfrequency load shedding. For the most representative
models, industrial input is required. In this work, generators are per conven-
tion simulated as a lumped “System inertia” block, but fine-grained simulations
of the electrical circuits in each control area, including the effects of generator
tripping triggered by overfrequency protection and islanding, are desirable. In
our preliminary study, we consider only attacks on the frequency input to AGC,
and only what we call overcompensation attacks among this class of attacks. In
future work, we will consider attacks on the tie-line power input, and AGC out-
put. The challenge is to represent these attacks with meaningful attack actions.
Economic dispatch is the process of determining how much power each genera-
tor generates, and how the power is transmitted under power flow constraints.
Since AGC plays a role in economic dispatch, financial loss as a result of attacks
interfering with economic dispatch will substantially influence the formulation
of the game matrix G. We will also take into account communication artefacts
such as latency, both as natural occurrences and consequences of attacks.
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