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Abstract—The general problem of Nash equilibrium design is
investigated from an optimization perspective. Within this con-
text, a specific but fairly broad class of noncooperative games
are considered that have been applied to a variety of settings
including network congestion control, wireless uplink power
control, and optical power control. The Nash equilibrium design
problem is analyzed under various knowledge assumptions
(full versus limited information) and design objectives (QoS
versus utility maximization). Among other results, the “price of
anarchy” is shown not to be an inherent feature of games that
incorporate pricing mechanisms, but merely a misconception
that often stems from arbitrary choice of game parameters.
Moreover, a simple linear pricing is sufficient for design of Nash
equilibrium according to a chosen global objective for a general
class of games and under suitable information assumptions.

I. INTRODUCTION

Game theory has been recently enjoying immense popu-

larity in the research community as it provides a new per-

spective to optimization, networking, and distributed control

problems. It incorporates paradigms such as Nash equilib-

rium and incentive compatibility, can help quantifying indi-

vidual preferences of decision-makers, and has an inherently

distributed nature. Consequently, game theoretic models have

been applied to a variety of problem domains ranging from

economics to communication networks and security [1]–[5].

Despite a general agreement on the usefulness of game

theory, there seems to be an ongoing and widespread mis-

conception in the research community about an unavoidable

“price of anarchy” or “efficiency loss” associated with any

noncooperative game formulation even under the existence

of pricing mechanisms. Unsurprisingly, this loss of efficiency

has been the subject of many investigations [6]–[8] and a

variety of pricing schemes have been proposed in the liter-

ature aiming to improve Nash equilibrium (NE) efficiency

with respect to a chosen criterion in specific settings [9]–

[13]. In addition, a separate but substantial literature exists

under the umbrella of implementation theory, especially in

the field of economics, which focuses on finding fundamental

bounds for games where the outcome satisfies some given

criteria [14]. The research community has revisited the

issue of mechanism design only very recently and indirectly

addressed some of the earlier misconceptions [15], [16]. On

the other hand, these studies are limited either to special

problem formulations or adopt specific efficiency criteria

such as sum of user utility maximization [17].
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Although tragedy of commons or price of anarchy are un-

avoidable in “pure” games without any external factors, they

can be circumvented altogether when additional mechanisms

such as “pricing” are included in the game formulation. In

parallel to some earlier results [18], this paper shows that

simple linear pricing is sufficient for design of NE according

to a chosen global objective for a broad class of games.

Therefore, “loss of efficiency” is not an inherent feature of a

broad class of games with built-in pricing systems, but merely

a misconception that often stems from arbitrary choice of

game parameters.

While it is straightforward to optimize NE according to

some criterion under full information, the problem is much

more complicated under information and communication

constraints. The game or system designer (Figure 1) usually

does not have full information about the system parameters

such as user preferences or utility functions. Under this

kind of information constraints, the designer either deploys

additional dynamic feedback mechanisms or requires side

information from the system depending on the specific design

objectives. An example for the former case is a dynamic

pricing scheme operating as an “outer feedback loop”. If the

objective is to achieve a social optimum (e.g. maximization

of sum of user utilities) or satisfying some quality of service

(QoS) conditions, then the designer often needs limited but

accurate (honest) information from users or the system. It

is important to note that, if the users have the capability of

manipulating such side information, then the design problem

can be more involved even ill-defined. For example, the goal

of reaching a social optimum without knowing true user

utilities but having only access to manipulated data may not

a realistic or even feasible one [14]. Although mechanisms

such as VSG have been proposed to circumvent these issues,

the resulting schemes are often limited and demanding in

terms of communication requirements [15].
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Fig. 1. The rules or pricing mechanisms within a game can be set by a
“designer” to influence the outcome.



This paper -to the best of our knowledge- constitutes the

only effort aiming to investigate the general problem of NE

design in a broad and constructive manner from an opti-

mization and control theoretic perspective. We study a fairly

general class of games that have been applied in a variety

of settings including network congestion, wireless uplink

power, and optical power control problems. Furthermore, we

investigate NE design for various knowledge assumptions

(full versus limited information) and design objectives (QoS

versus utility maximization). Conditions for pricing functions

that allow locating the NE solutions to any desired point are

derived. In addition, convergence of two example dynamic

pricing schemes is shown under the time-scale separation

assumption between the game and pricing dynamics. On the

other hand, we restrict our treatment to a class of games

where players do not manipulate the game by deceiving the

system designer and where utility functions accurately reflect

user preferences.

The rest of the paper is organized as follows. Section II

presents the game model and NE design problem formu-

lations. Section III discusses NE design under complete

information, whereas Section IV investigates the incom-

plete information case with two specific objective functions:

QoS-based and utility maximization. Subsequently, a brief

overview of NE dynamic control is given in Section V which

is followed by the concluding remarks of Section VI.

II. MODEL AND PROBLEM FORMULATION

Consider a class of N player static noncooperative games,
denoted by G0, on the compact action (strategy) space Ω ⊂
R

N where the ith player’s actions are denoted by the vector
xi, x ∈ Ω. Furthermore, the ith player is associated with a
smooth (continuously differentiable) cost function, Ji : R ×
Ω → R, Ji(αi,x), i = 1, 2, . . . , N , parametrized by a scalar
“pricing” or game parameter αi ∈ R. In some formulations,

there may be (coupled) restrictions on the domain of these

parameters such that α ∈ Ω̂ ⊂ R
N . However, it will be

assumed in this paper that Ω̂ = R
N for simplicity. Assuming

a set of sufficient conditions for the existence of at least one

Nash equilibrium (NE) are satisfied, define a game mapping,

T (an inverse game mapping T̂ ) that maps game parameters
α to NE points (NE points to parameters):

T : R
N → Ω and T̂ : Ω → R

N , (1)

such that

x
∗ = T (α∗) and α∗ = T̂ (x∗) (2)

for any NE point x
∗ and corresponding parameter vector

α∗. Notice that the mappings T and T̂ are highly nonlinear,
often not explicitly expressible, and may not be one-to-one

or invertible except for special cases, i.e. games with special

properties.

Next, consider a class of games, G1, by assuming a

specific cost structure of the form

Ji(αi,x) = αipi(x) − Ui(x), (3)

where the functions pi and Ui are smooth and chosen in such

a way that there exists at least a single NE in the game, e.g.

the function pi can be convex while Ui is strictly concave

with respect to xi for any given x−i. Further define another

class of games, G2, as a special case of G1 with additional
conditions on the cost structure, such that they admit a unique

NE solution. An extensive analysis on conditions for the

existence and uniqueness of NE can be found in [19]. Notice

that a large set of network games belong to this class with

notable examples of network congestion games [11], [20],

power control games in wireless networks [1] and optical

networks [4].

Assume that the utility function Ui accurately reflects the

user preferences. Then, the pricing function pi and param-

eters α enable the system designer to influence (optimize,
control) the game outcome to achieve a desired objective.

This is similar -in spirit- to the goal of implementation theory

or mechanism design in the economics literature [14] with

the important difference of not allowing users to knowingly

manipulate the system. Then, the problem of designing the

NE of the game can be formulated as follows, which is also

illustrated in Figure 2.
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Fig. 2. The objective of NE, x∗
∈ Ω, design may involve moving it to a

desirable region Ω̂ ∩ Ω or a specific point x̂.

Problem 1. How to choose the pricing function p and
parameters α such that the NE of games of class G1 satisfies
some desirable properties?

Two specific but common examples of such properties are

1) The NE coincides with the solution of a global opti-

mization problem, e.g. welfare maximization:

x
∗ = arg max

∑

i

Ui(x) such that x ∈ Ω.1

2) The NE satisfies some system or user-dependent con-

straints such as capacity constraints, non-negativity, or

performance bounds. For example, the favorable set Ω̂
can be defined as

Ω̂ := {x ∈ R
N : xi ≥ 0 ∀i,

∑

i

xi ≤ C, si(x) ≥ s̄i ∀i},

where C is a capacity constraint, s(·) is a quality of
service (QoS) measure such as signal-to-interference

ratio (SIR), and s̄ denotes the minimum acceptable
QoS level.

1All summations in the paper are from 1, . . . , N unless explicitly defined.



An important aspect of Problem 1 is the amount of

knowledge available to the system designer in optimization

of NE. If there is complete knowledge of player preferences

and global system objective, then the approach to be adopted

can be quite different from the one when the designer has

very limited information. In cases when the game dynamics

are very fast, it is appropriate to focus on static optimization

of the NE point. Then, the actions of the system designer are

assumed to be on a slower time-scale than the actual game

dynamics between the players resulting in a hierarchical

structure. However, if the game dynamics are slow or there

are external disturbances, then the game can be treated as a

dynamic control system that needs to be stabilized around

the desired point.

III. NE DESIGN UNDER COMPLETE INFORMATION

First, we investigate the question of NE design under the

assumption of having complete access to all game parameters

and cost functions of players for the static and dynamic

cases. Subsequently, in Section IV, the same problem will

be studied under information constraints and limitations.

When is it feasible to design a game such that the NE

point can be located by the system designer to a point or

region with desirable properties? Consider, without loss of

any generality, the point case and denote the target point as

x̂. Then, the problem is to find an α̂ such that α̂ = T̂ (x̂), for
any desirable feasible x̂. The following surprisingly simple

result addresses this problem for a broad class of games.

Theorem III.1. For games of class G2 with the cost structure
given in (3) and under complete information assumption,

affine pricing of the form, α p(·), is sufficient to locate the
unique NE point of the game to any desirable feasible point,

x̂ ∈ Ω, as long as

∂pi(x̂)

∂xi

6= 0, ∀i.

Proof. The proof immediately follows from the first order

necessary optimality conditions of player cost optimization

problems due to the convexity of the cost structure and

uniqueness of NE.

αi

∂pi(x̂)

∂xi

−
∂Ui(x̂)

∂xi

= 0 ⇒ α̂i =

[

∂pi(x̂)

∂xi

]−1
∂Ui(x̂)

∂xi

∀i.

for any feasible x̂.

Remark III.2. Theorem III.1 can easily be extended to the

case where users actions are on a multi-dimensional subspace

if the users utility function is separable.

Notice that even a simple linear pricing function p(xi) =
xi satisfies the conditions of the theorem and is sufficient for

NE optimization. In this case any x̂ ∈ Ω is feasible. However,
a symmetric pricing scheme, where αi = αj ∀i, j, is not
sufficient in general. As other examples, for p(xi) = exi any

x̂ is feasible, while for p(xi) = x2

i any x̂ 6= 0 is feasible.
If a game admits multiple NE, e.g. games of class G1,

then reaching a single desirable point does not make much

sense. Furthermore, the problem of locating all NE points

to a desirable region can be rather complex. Such cases can

be handled either by exploiting any special structure of the

game due to its specific problem domain or using numerical

methods.

Theorem III.1 clearly establishes that “loss of efficiency”

or “price of anarchy” is not an inherent feature of a broad

class of games with built-in pricing systems, but merely a

misconception that stems from arbitrary choice of game pa-

rameters. If there is sufficient information, then any game of

class G2 can be designed through simple pricing mechanisms
in such a way that any desirable criteria such as welfare

maximization or QoS requirements are met at the unique

NE solution. An immediate question is of course the lack of

information which we will address in the next section.

IV. NE DESIGN UNDER INFORMATION CONSTRAINTS

In many problem formulations, the system designer does

not have full information about the system parameters such

as user preferences or utility functions. Under such infor-

mation constraints, the designer either deploys additional

dynamic feedback mechanisms or requires side information

from the system, depending on the specific design objectives.

An example for the former case is a dynamic pricing scheme

operating as an “outer feedback loop”. If the objective is

to achieve a social optimum (e.g. maximization of sum of

user utilities) or satisfying some QoS constraints, then the

designer often needs accurate and honest side information

from users or the system. Given such side information, the

task of the designer can be formulated as an optimization

problem even if it is solved indirectly or in a distributed man-

ner. Here, the NE optimization is assumed to be on a slower

time scale than the actual game dynamics leading to a time-

scale separation, and hence to a hierarchically structured

problem. Assuming this time-scale separation for simplicity,

initially only the pricing dynamics (slower dynamics) are

considered, [21].

We now investigate design problems with accurate but lim-

ited information. To illustrate the underlying concepts, two

example formulations are provided. In the first formulation,

the objective is to locate the NE to a region that satisfies

some feasibility and QoS constraints. In the second one, the

objective is to make the NE coincide with a social optimum

(maximizing sum of user utilities) for the special case of

separable user utilities of the form Ui(xi). For both cases,
we consider a class G2 game with the following general cost
structure

Ji(αi,x) = αipi(x) − Ui(x). (4)

A. QoS-based Objective

Consider a game with cost structure given in (4) and utility

function

Ui(x) = βi log(1 + si(x)),

where si(x) :=
hixi

∑

j 6=i hjxj + σ2
.

(5)

Here, s represents a simple signal-to-interference ratio
(SIR) with h > 0 denoting gain parameters and σ2 a noise



term. The desired region for the NE of this game could be

shaped by feasibility constraints such as positivity of user

actions and an upper-bound on the sum of them, and/or some

chosen minimum SIR levels (assuming these are chosen such

that the region is not empty). A concrete example region Ω̂
can be defined as

Ω̂ := {x ∈ R
N : xi ≥ 0, si(x) ≥ s̄i ∀i}, (6)

where s̄i are user-specific minimum SIR levels. A detailed

analysis of an example case is provided next. For a separate

but similar example of this formulation we refer to [5].

1) Example: Consider a single-cell spread-spectrum

wireless uplink power control system with M users [22].

Each user i decides on its own power level xi and is

associated with the cost function Ji as in (4). The pricing

function pi(x) is chosen to be linear in xi such that

Ji(αi,x) = αixi − βi log(1 + si(x)),

where si(x) is defined in (5). Under appropriate assumptions,
the game is one of class G2 and admits a unique inner NE
solution, x∗.

For notational convenience, we define the matrix

A :=

















1 h2

Lh1

h3

Lh1

· · · hM

Lh1

h1

Lh2

1 h3

Lh2

· · · hM

Lh2

h1

Lh3

h2

Lh3

1 · · · hM

Lh3

...
...

. . .
...

h1

LhM

h2

LhM

· · · hM−1

LhM

1

















(7)

Then, the NE is the solution of

Ax
∗ = c,

where

c :=

[

β1

α1

−
σ2

Lh1

, . . . ,
βM

αM

−
σ2

LhM

]

.

The desired QoS region Ω̂ in (6) can be alternatively
described in terms of received power levels at the base

stations and in matrix form [23]:

Ω̂ = {x ∈ R
N : xi ≥ 0 ∀i, Sx ≥ b},

where the matrix S is defined as

S :=



















h1 −h2

s̄1

L
· · ·

−hM s̄1

L
−h1s̄2

L
h2 · · ·

−hM s̄2

L
...

. . .
...

−h1s̄M

L

−h2s̄M

L
· · · hM



















, (8)

and

b :=

[

s̄1σ
2

L
, . . . ,

s̄Mσ2

L

]T

.

If the designer, here the base station, has full information,

then given a feasible target SIR level s̄ it is possible to solve
for a pricing vector α such that the NE is on the boundary of
Ω̂, i.e. Sx = b. This is due to both matrices A and S being

nonsingular as hi > 0 ∀i. Hence, the appropriate pricing
vector α can be immediately obtained from the boundary
solution

c = AS−1(b),

and the definition of c.

However, in the limited information case where the de-

signer does not have access to user preferences, a dynamic a

pricing mechanism can be deployed. Toward this end, define

a set of penalty functions ρi(xi) to bring the system within
the desired region

ρi(xi) :=

{

f(bi − (Sx)i), if si < s̄i

0, else
, (9)

where the scalar function f(·) is smooth and nondecreasing
in its argument, and f(0) = 0. For example, f could be a
quadratic function.

A possible pricing function is then

α̇i =
∑

j

∂ρj

∂x∗
j

∂x∗
j

∂αi

∀i. (10)

It is assumed here that the designer (base station) has

access to system parameters L, h, and σ. Therefore, the
terms ∂ρj/∂x∗

j ∀j can be computed without any additional
information. In addition, the designer can estimate the terms

∂x∗
j/∂αi ∀i through iterative observations [24].

Finally, this pricing mechanism ensures that the NE point

of the underlying game, x∗, enters the desired QoS region

Ω̂. To show this, define the Lyapunov function

V := −
∑

i

ρi(xi)

on the compact game domain Ω. Taking the derivative of V
with respect to time along the pricing dynamics (10) yields

V̇ = −
∑

i

∂ρi

∂xi

∑

j

∂xi

∂αj

α̇j

= −
∑

j

(

∑

i

∂ρi

∂xi

∂xi

∂αj

)

α̇j

= −
∑

j(α̇j)
2 ≤ 0,

with V̇ < 0 outside the set Ω̂ and V̇ = 0 if and only if
α̇i = 0 ∀i. Hence, the system converges to the desired region
Ω̂ under the pricing mechanism.

B. Utility Maximization

Define a strictly concave and smooth social welfare func-

tion U(x) which is a sum of concave and separable utility
functions U(x) :=

∑

i Ui(xi) and admits a global maximum
x̂ = arg maxx

∑

i Ui(xi). This objective function constitutes
a special case due to separability of user utilities and allows

for design of a pricing scheme that brings the NE to the

social maximum point without necessarily requiring any

side information. As an example, consider a game with the

following cost function Ji(αi,x) = αipi(x)−Ui(xi). Then,
the social maximum is defined easily via the first order



optimality conditions

∂U

∂x
(x̂) =

[

∂U

∂x1

(x̂) . . .
∂U

∂xN

(x̂)

]

= 0.

Since U(x) is separable, the first order optimality conditions

are
∂Ui

∂xi

(x̂i) = 0 ∀i.

We show that the social maximum coincides with the

unique equilibrium (and NE) point of the following pricing

mechanism

α̇i =
∑

j

∂Uj

∂x∗
j

∂x∗
j

∂αi

∀i.

If these pricing dynamics are on a slower time scale than

the game dynamics, then the system designer can obtain

sufficiently accurate estimates of ∂Ui(x
∗
i )/∂xi and ∂x∗

i /∂αi.

As one possibility, if the users adopt a gradient algorithm

to solve the game, e.g. ẋi = −∂Ji/∂xi, then the designer

can use past values of x∗ and α along with the exact form
of the pricing functions p in (4) to estimate ∂Ui(x

∗
i )/∂xi

directly without requiring any side information (except from

some fixed system parameters) [24]. Another option is the

users submitting their individual Ui(xi) values (but not
the functions) to the designer with sufficient frequency to

facilitate an accurate estimation. The full system, composed

of pricing dynamics on the slow time scale (reduced system)

and user dynamics on the fast time scale, can be analyzed by

using a boundary layer approach as in [21]. For simplicity,

we now focus only on the pricing dynamics (slow or reduced

system).

Assume an ideal case where the parameter estimation

is perfectly accurate. Then, the pricing mechanism above

ensures that the NE point of the underlying game globally

asymptotically converges to the maximum of the social

welfare function.2 The next theorem summarizes this result

for the separable utility case and follows from Lyapunov

theory and LaSalle’s theorem in a straightforward manner

by choosing the negative of social welfare function itself U
as a Lyapunov function for the system.

Theorem IV.1. Define an objective function U(x) :=
∑

i Ui(xi) which admits a unique inner global maximum
x̂ = arg maxx U(x) under suitable assumptions for user
utilities Ui ∀i in a class G2 game. Further define the pricing
mechanism

α̇i =
∑

j

∂Uj

∂x∗
j

∂x∗
j

∂αi

∀i, (11)

Then, this pricing mechanism ensures that the NE point of the

underlying game, x∗, globally asymptotically converges to

the maximum of the social welfare function, x̂, if the Jacobian

matrix of the mapping T with respect to the pricing vector
α, defined as

H(α) :=
∂x

∗

∂α
(α) =

[

∂x∗
i

∂αj

(α)

]

, i, j = 1, . . . , N,

2For simplicity, the social maximum point is implicitly assumed to be on
the solution space of the game.

is non-singular.

Proof. We analyze only the pricing dynamics (slow), assum-

ing that the user dynamics is fast and converges quickly to

x
∗ = T (α) for any given α. The pricing scheme (11) admits
a unique equilibrium if and only if ∂Ui/∂xi = 0 ∀i. 3 The
sufficiency statement immediately follows from (11).

To show necessity, for the NE x
∗ denote by

H(α) =
∂x

∗

∂α
(α) =

[

∂x∗
i

∂αj

(α)

]

, i, j = 1, . . . , N,

the Jacobian matrix of the mapping T with respect to the
pricing vector α. Then, using separability of the cost, (11)
can be written in vector form as

α̇ = HT (α)

[

∂U

∂x
(x)

]T

. (12)

Under the assumption that H is non-singular, it follows

immediately that at the equilibrium point it is necessary

that ∂U/∂x = 0, which at the same time characterizes x̂.

Consequently, at the unique equilibrium point of the pricing

scheme the objective function U(x) reaches its maximum.

In order to establish convergence of (11), define a Lya-

punov function similar to the one in Example 1:

V := −
∑

i

Ui(xi(α))

on the compact game domain Ω and α ∈ R
N . Taking

the derivative of V with respect to time along the pricing
dynamics (11) yields

V̇ = −
∑

i

∂Ui

∂xi

∑

j

∂xi

∂αj

α̇j

= −
∑

j

(

∑

i

∂Ui

∂xi

∂xi

∂αj

)

α̇j

= −
∑

j(α̇j)
2 ≤ 0.

Thus V̇ = 0 only at α̇j = 0, ∀j, or at its unique equilibrium.
Hence, by the LaSalle’s theorem, (Theorem 4.4, [21]), the

pricing scheme (11) globally asymptotically converges to its

unique equilibrium at which the NE solution coincides with

the social maximum.

1) Example: Consider a game with separable utility func-

tions with the cost

Ji(αi,x) = αi (
∑

i xi) − Ui(xi),

where Ui := βi log(1 + xi) − kixi).

This type of utility function may arise due to inherent phys-

ical constraints on player actions such as battery constraints

on uplink transmission power levels in wireless devices.

Then, the NE solutions is

x∗
i =

βi

αi + ki

− 1.

3We drop for the rest of the proof the (·)∗ notation characterizing the
NE for convenience.



Notice that, the matrix H(α) is diagonal in this case.
Furthermore, we can explicitly find

∂x∗
i

∂αi

= −
βi

(αi + ki)2
< 0,

from which non-singularity of H immediately follows. The
properties of this example also hold for a quadratic pricing

function replacing the linear one, i.e., pi(x) =
∑

i x2

i .

However, for pi(x) = e
P

i
xi , x∗

i is not independent of αj

and non-singularity of H(α) is not immediate.

V. DYNAMIC CONTROL OF NE

In many games that are solved by players in a distributed

manner, convergence of the system trajectory to the NE may

not be very fast, and hence the time-scale separation between

system designers actions and actual game dynamics may

fail. Then, the NE design can be modeled as a feedback

control system which utilizes pricing as the control input

and the desired target as the reference (see Figure 3). This

formulation also brings a certain robustness with respect to

initial conditions or game (system) parameters. The latter

case is especially relevant for systems that are non-stationary

over longer time periods and can also be formulated as a

tracking problem. We refer to congestion and power control

game formulations as specific examples [1], [13], [20].

x̂

Control
α

Game System
x

x

Fig. 3. Feedback control of the game (NE, x∗) using pricing α as the control
parameter and x̂ as the desired reference signal.

The counterpart of the feasibility question in the case of

static NE optimization of the previous section in the dynamic

control setting relates to the controllability of the system

shown in Figure 3, or reachability of a state x̂. In order to

provide a concrete example to the problem of controllability,

consider a game of class G2 where the players adopt a
gradient algorithm to optimize their own cost. Then, the

game dynamics are:

ẋi = −
∂Ji(x)

∂xi

=
∂Ui(x)

∂xi

−
∂pi(x)

∂xi

αi ∀i, (13)

where α acts as the feedback control on the outcome of
the game. Here, the objective is to investigate the conditions

under which the game system is controllable. We write (13)

in vector form as

ẋ = f(x) +

N
∑

i=1

gi(x)αi = f(x) + g(x)α (14)

where α = [α1 . . . αN ]T , g(x) = [g1(x), . . . , gN (x)] and

f(x) =

[

∂U1(x)

∂x1

. . .
∂Ui(x)

∂xi

. . .
∂UN (x)

∂xN

]T

g(x) =















−
∂p1(x)

∂x1

. . . 0

. . . −
∂pi(x)

∂xi

. . .

0 . . . −
∂pN (x)

∂xN















Based on the standard theorem on controllability using Lie

brackets [25, Chapter 1], we obtain the following result.

Theorem V.1. For games of class G2 with the cost structure
given in (3) and game dynamics (13), or (14), a sufficient

condition for local reachability around a point x0 is that the

distribution C satisfies the rank condition at x0, dimC(x0) =
N where

C =
[

g1, . . . , gN , [gi, gj ], . . . , [f, gi], . . . , adk
fgi, . . .

]

where [f, g](x) =
∂g(x)

∂x
f(x) −

∂f(x)

∂x
g(x) is the Lie

bracket of f and g, and adk
fg denote higher order Lie

brackets defined recursively by adk
fg(x) = [f, adk−1

f g](x).

Remark V.2. Notice that if the diagonal matrix g(x0) has
rank N , any x̂ locally around x0 is reachable in finite time

under piecewise constant input functions, which is equivalent

to the feasibility condition in Theorem III.1. In addition,

for the simple linear pricing function p(xi) = xi any x̂ is

immediately reachable since g(x̂) is constant and invertible.

VI. CONCLUSION

The general problem of Nash equilibrium design is dis-

cussed from an optimization and control theoretic perspec-

tive. A fairly general class of games is investigated that

have been applied to a variety of settings including network

congestion control, wireless uplink power control, and op-

tical power control. The NE design is studied for various

knowledge assumptions (full versus limited information)

and design objectives (QoS versus utility maximization).

Conditions for pricing functions that allow locating the

NE solutions to any desired point are derived. In addition,

convergence of two example dynamic pricing schemes is

shown under the time-scale separation assumption between

the game and pricing dynamics.

Ongoing work includes an extension of Theorem IV.1

for a full analysis of both pricing (slow) and user (fast)

dynamics by using a singular perturbation approach and a

combined Lyapunov function. A future research direction is

the application of NE design methods to specific problems

such as power control in optical networks and spectrum

allocation in wireless networks. An additional direction is

the analysis of estimation methods under limited information

and the effect of estimation errors on performance.
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