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Abstract- Wavelet decomposition coefficients 
of a gray level image are vector quantized 
with flexible, variable sized codewords and 
a wavelet based tree search algorithm. 
Vector quantization codewords are designed 
as rectangles with ratio 1 to 2, which is more 
efficient in encoding different subbands 
with minimum error. The performance of 
the discrete cosine transform is observed in 
different bands. The low frequency subband 
is scalar quantized due to the poor 
performance of DCT in this band. 

I.  INTRODUCTION 

      Subband decomposition is a widely used 
and accepted technique for image 
compression. A typical coding scheme can be 
modelled as follows [1]:  (1) subband 
decomposition; (2) quantization of subbands; 
(3) entropy coding. 

     There are several approaches for subband 
decomposition, zero tree and balanced tree 
being two widely used examples [2]. Recently, 
discrete wavelet transform (DWT) based 
decompositions have become by far the most 
popular alternatives for image compression 
purposes.  

     In the second stage, although there exist 
many scalar quantization schemes such as 
pulse code modulation (PCM), differential 
PCM (DPCM), adaptive DPCM, vector 
quantization (VQ) shows a better performance 
since its efficiency increases in proportion to 
the source correlation. The main drawbacks of 
VQ algorithms are the long search times 
needed for coding process and high memory 
requirements. Classification, tree structure, 
partitioning are proposed solutions for limiting 
the search duration in VQ. 

     In this paper we follow the procedure 
summarized above for image compression. 
However we introduce efficient method that 
improves the search algorithm of VQ by 
decreasing the search time and computation 
appreciably without significant loss of quality. 
We also use codewords with rectangular shape 
to the contrary of traditions, to exploit the 
correlation between wavelet coefficients in 

higher frequency sub-bands. For the lowest 
frequency subband, where the most important 
data are located, we use a scalar quantization 
scheme known as deadband quantization at the 
final stage. In a natural image, most of the 
energy is contained in the lowest frequency 
subband [2]. Therefore, we allocate half of our 
bit budget to this band.  

II.  WAVELET BASED VECTOR QUANTIZATION 

     Although VQ is the best way of quantizing 
and compressing images, it has a major 
drawback in the amount of computations 
during the search for optimum codevector in 
encoding [4, 5]. This complexity can be 
reduced by using an efficient codebook design 
and wavelet based tree structure. We take 
multiple stage discrete wavelet transform of 
codewords and use them in both search and 
design processes. Accordingly, our codebook 
consists of a table, which includes only the 
wavelet coefficients . 

     One of the search time limitation algorithms 
is tree structured vector quantization (TSVQ) 
[5, 9]. The key idea in this algorithm is finding 
Representative codevectors for each stage are 
found by first combining n codewords in k 
groups, where kn gives the codebook size. 
After obtaining the k groups, one may take the 
centroids of the clusters as their representative 
vectors. Processing as before, we can decrease 
the number of representative vectors. This 
procedure enables us to obtain correct 
codevectors in 2n comparisons for the two 
stage design instead of nk computations. In the 
design stage, obtaining the clusters plays an 
important role, and many times one can end up 
with non-optimum centroids, which results in 
incorrect codevector correspondences. 

     In order to decrease the computation time, 
after the standard design procedure, we can 
replace the representative vectors (each 
representing n vectors) by low bands of their 
wavelet transforms. An m stage TSVQ 
structure possesses mn codevectors. For the kth 
stage, we can replace each representative 
vector by the lower bands of the (m-k)th 
wavelet transforms whichhave dimensions of 
ab/22(m-k-1) for the codevectors with original 
size of ab. Further simplification can be 



realized during the design stage. One can start 
with the original codevectors and combine 
them into the lowest group clusters. After 
obtaining the centroids of the clusters, we get 
the last stage representatives. Then one can 
take the first stage wavelet transforms of the 
representative vectors and use only the lower 
bands as new representatives. Again with the 
same procedure, we can obtain the above stage 
clusters which include wavelet transforms. 
Proceeding similarly gives the whole structure 
with less computation. 

III.  THE ALGORITHM 

     The first stage subband decomposition is 
done through the two-dimensional wavelet 
transform on the image. We have chosen the 
Daubechies family of basis functions for 
DWT, which is widely used in image 
compression [6]. 

     After the decomposition process, we have 
four different energy bands at hand: low-low 
(LL), low-high (LH), high-low (HL), and high-
high (HH) parts. The least energy containing 
and the most redundant band is HH, which we 
have simply ignored, and actually treated as 
Gaussian noise [7].  

     The LH and HL bands also exhibit the 
characteristics of a high frequency signal; but 
there exists correlation among the horizontal 
and vertical pixels for the former and latter 
bands, respectively. Intuitively, one can try to 
use classical transform coding techniques, such 
as the discrete cosine transform (DCT) [3], for 
these bands. This happens to be a useless 
attempt due to the fact that the coefficient 
distribution of the resultant transformed matrix 
does not exhibit localization of high energy 
coefficients as expected in general. The main 
reason behind this phenomenon is the absence 
of high correlation between the pixels. The 
correlation matrices and the distribution of the 
DCT coefficients are shown in Figure 1 and 
Figure 2. 

     Due to the reasons stated above, one should 
use quantization for compressing these bands 
unless they will simply be dismissed as well. 
Usually, scalar quantization followed by 
entropy coding is applied to these bands as the 
quantization-compression scheme. However, 
we claim that for a variable sized codeword, 
VQ should give promising results when the 
codebook is trained effectively.  

 

 

 

 

 

 

 

 

Figure 1: Autocorrelation matrices for the LL 
and LH bands, respectively. 

 

 

 

 

 

 

 

Figure 2: DCT coefficients for the LL and LH 
bands 

     At this point, one can object to this 
approach by the following argument: VQ is 
efficient over scalar quantization mainly 
because it exploits the high correlation in the 
signal [8, 9]. But it is also known that these 
bands are not correlated as stated before, and 
VQ can not produce acceptable performance. 
However, correlation exists in horizontal or 
vertical directions for these bands, and hence, 
by choosing the codevector sizes 
appropriately, we can use vector quantization 
most efficiently. We utilize a new construction 
of the codevectors in order to exploit the 
interpixel dependencies in these bands. In 
particular, we propose 4×8 blocks for the LH 
band, and 8×4 blocks for the HL parts in the 
vector quantizer code vectors.  

     For memory considerations, we employ the 
same codebook for both bands, but each 
codevector is also used for another band by 
taking the transpose of it in order to obtain the 
appropriate size. This saves from needing two 
different codebooks, which would double the 
memory allocation requirement of the scheme. 
In Figure 3 one can observe this in Lena image 
subbands. In the LH and HL bands of the 
image, we observe similar patterns which can 
be coded by the same codevectors.   

 



 

Fig. 3. Similarities between subbands 

     After discarding the HH band and coding 
the HL and LH sidebands, we further 
decompose the LL band. This does not bring 
together much computational load, because the 
size of the LL band is one fourth of the 
original image. At this point, the LL band is 
replaced by the following bands: low-low-low-
low (LLL), low-low-high-low (LHL), low-
low-high-high (LHH) and low-low-low-high 
(LLH). LHH band contains significant amount 
of energy and can not be discarded. We apply 
the same quantization scheme described earlier 
in this section to all three high frequency bands 
of the second level transform, namely LLH, 
LHL and LHH.  

     4×8 blocks used for the HL and LH bands 
are wavelet transformed to 2×4 blocks for 
usage in LHL, LLH and LHH. Although it 
may look as if we are generating a separate 
codebook consisting of 2×4 codevectors, the 
difference lies in the training and coding 
stages. The 4×8 and 2×4 blocks are in effect 
simultaneously trained since the codevectors 
are related through the wavelet transform. The 
only additional computation is in the training 
stage, where the DWT of the codevectors are 
calculated. 

     After deciding on the codebook size, one 
has to determine the VQ search algorithm. In 
this paper, we employed the wavelet tree 
structured vector quantization (WTSVQ), 
where during the construction of the tree 
structure, the vectors are combined according 
to the Euclidean distance between the LL 
bands of their wavelet transforms. Thus, the 
LL band of the codevector becomes the 
representative for that vector. In fact, WTSVQ 
can be interpreted as a modified version of the 
classified VQ scheme. This approach reduces 
the computational complexity as we work with 
m/2×n/2 vectors rather than m×n. 

     One other advantage of WTSVQ is its 
capability of decreasing the codevector 
dimensions. As a result, when clustering the 
vectors, the reduction in the dimension of the 
vector space enables very effective clustering, 
which leads to more efficient trees. The 
codebook is trained over this structure with 
more pictures in a shorter time period. 

The tree is constructed in two stages. In the 
first stage we have p representative codewords. 
Below this layer, we have r additional 
codevectors related to each of the p first stage 
codevectors, giving rise to a codebook of size 
rp. After the tree structure is set up, we begin 
to use the elements of the training set to 
develop the codebook. We take the first 
subblock of the training set matrix, and 
compare it to the p first stage elements, 
obtaining an index of the best-fitting element. 
Then we compare the training set subvector 
with the r elements which lie below the first 
stage's best fitting vector. This process requires 
r+p comparisons for determining the best 
fitting codeword instead of rp.  

     Last part of the compression scheme 
involves the coding of the LLL band. Although 
there is high correlation among the pixels of 
this band, the DCT coefficients are not 
localized enough. From Figure 2, we observe 
that there is a peak in the upper left part of the 
DCT matrix, as well as deep fluctuations in the 
diagonal elements of this matrix. Thus it is not 
possible to discard as many DCT coefficients 
as it is usually done for natural images, and 
scalar quantization is used for this band. In 
fact, for further compression quantized 
coefficients can be entropy coded. Since we 
are mainly concerned with VQ and its use in 
subband coding, we do not consider scalar 
entropy coding in this paper. However we 
implement a deadband scalar quantization for 
the LLL subband, where all higher frequency 
bands of natural images exhibit Gaussian 
distribution in their histograms. Therefore if 
the coefficients close to zero are discarded, a 
good compression ratio can be achieved. 

IV.  RESULTS AND CONCLUSION 

 

     In the proposed algorithm, a single 
codebook is used for all subbands. We used the 
Lena image (256×256) in the experiments due 
to its very good histogram distribution. For 
Lena, the number of common indices of 
codevectors among high frequency bands is 
displayed in Table 1. 

 

 

  Table 1: The number of common codewords 
for the Lena image 



 

     Table-1 indicates that there exists a 
significant amount of correlation between the 
subbands. Between some bands, as many as 
20-25% of the indices are in common. We 
observe that there is more than 20% correlation 
between the bands at each level; for example, 
LH versus HL, and LHL versus LLH. There  

is also some correlation between LHH, LHL 
and LLH bands. This evidence is in support of 
using the same codebook for different bands 
by just changing the codevector dimensions. 
There is also more than 10% common sharing 
of codevectors between bands of different 
levels due to the codebook structure. 

     The compressed Lena pictures are shown in 
Figures 4 and 5 for two different codebooks 
trained with three and ten images, respectively. 
The compression ratio is 12:1 with 
approximately 0.6 bits per pixel on the 
average. 

 

Figure 4: Lena image with wavelet based 
subband VQ trained over three images, with 
compression ratio 12:1. 

 

 

Figure 5: Lena image with wavelet based 
subband VQ trained over ten images, with 

compression ratio 12:1. 

     In Table 2, the image quality offered by the 
proposed compression algorithm is evaluated 
against the JPEG standard in terms of the peak 
signal to noise ratio (PSNR), the average 
difference (AD) and the image fidelity (IF) 
[10]. Notice that we have worked with 
256×256 images, which resulted in PSNR 
ratios lower than usual. 

  

 

 PSNR AD IF 

3 Image Training 25.979 6.11e-05 0.9868 

10 Image Training 27.042 6.11e-05 0.9895 

JPEG 28.511 0.0220 0.9927 

Table 2: Performance evaluation of the images 
using various quality measures. 

 

     The results in Table 2 justify that with a 
better trained codebook, the performance of 
the proposed algorithm approaches JPEG for 
both PSNR and IF measures, whereas in terms 
of the AD criterion it outperforms the standard 
competition. 

     The final conclusion is that DCT based 
algorithms, which were considered to ensure 
higher fidelity turned out to be inefficient. 
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