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Abstract—This paper introduces a novel methodology for
designing efficient and strategy-proof direct mechanisms for
a class of problems, where the user types are represented by
smooth, concave, and increasing utility functions. Such mecha-
nisms facilitate distributed control and allocation of resources.
Hence, they are applicable to diverse problems ranging from
those in communication networks to energy management.

A three-step mechanism design process is presented for
deriving the resource allocation and pricing functionals based
on user bids in an auction setting. The properties of the resulting
class of mechanisms are formally analysed using strategic
(noncooperative) games. Although these mechanisms belong to
the Groves class, they differ from the Vickrey-Clarke-Groves
(VCG) mechanisms. The developed design process is illustrated
with analytically tractable examples, which are motivated
by network control problems and use scalar-parameterised
logarithmic utility functions. It is shown that the resulting
schemes are both efficient and truth-revealing (strategy proof)
as expected.

I. INTRODUCTION

A. Background

Game theory, specifically strategic (noncooperative)

games, study multi-person decision making by taking into

account preferences of individual players (e.g users), who

share and compete for limited resources in a system. They

provide a suitable mathematical approach for formal analysis

and design of distributed optimisation and control systems.

Unsurprisingly, game theory enjoys widespread adoption

by the engineering community. Game theoretic frameworks

have been developed to address various problems such as

rate control, interference management, and power control in

wireless, wired, and optical networks [1], [2], [15] .

Nash Equilibrium (NE) is an important solution concept

in strategic games. It is defined as a fixed-point where no

player of a strategic game has an incentive to deviate from. It

follows directly from the action space and utilities of players

through a fixed-point theorem [5] and its elegance lies partly

in its simplicity. However, a Nash Equilibrium can be a very

inefficient solution with respect to a given global objective.

This issue known as price of anarchy or efficiency loss has

been the subject of many investigations [8], [10], [11], [16],

[18]. The problem gets more complicated in the case of

multiple NE, where it is difficult to even define what it means

to have an efficient outcome. Therefore, the focus here is on

a class of strategic games which admit a unique NE solution.
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It is clearly desirable to design mechanisms, which can

be formally analysed using game theory, such that their

outcome is efficient, or the corresponding equilibrium of

the associated game is optimal with respect to a given

global objective [3], [4]. A mechanism designer aims to

develop and implement such an optimal mechanism without

having prior knowledge (possibly except from aggregate

statistics) on participating users’ preferences, which are

captured here by smooth, concave, and increasing utility

functions. The users in the system, modelled as players of

the corresponding game, are free to behave according their to

own private and selfish incentives which may contradict the

global objectives. The problem in this case turns out to be the

information exchange between the mechanism (designer) and

users. If the users have sufficient knowledge on the system

and its operation, they can try to mislead the designer

or manipulate the mechanism such that the outcome is to

their individual benefit in expense of others. This result is

clearly not desirable from a mechanism design perspective.

Therefore, a desirable mechanism has to be not only efficient

but also truth revealing or strategy proof, i.e. the users have

no incentive to mislead the system [6], [11], [12], [14].

The efficiency criterion means that the equilibrium of the

game modelling the mechanism coincides with the maximum

of a given global objective function. The commonly used

“social welfare” of users, which is the (weighted) sum of user

utilities, is chosen here as the global objective function. It is

assumed that the designer does not have even statistical or

aggregate knowledge of user utilities (preferences or types).

Consequently, mechanisms captured by Bayesian games are

not investigated here. The mechanisms developed here are

referred to as truth revealing or strategy proof, if and

only if the corresponding game admits a dominant strategy

equilibrium (DSE), which uniquely reveals the user types

(preferences). A game admits a DSE, if the individual players

choose an action regardless of the actions of others.

This paper presents a novel methodology for designing

efficient and strategy-proof direct mechanisms for a specific

class of problems. The resulting auction schemes are mod-

elled and analysed as strategic games. The goal is then to

ensure that the game admits a unique DSE and it coincides

with the maximum of the sum of user utilities. Hence, the

mechanism is provably efficient and truth revealing (strategy

proof). This result is achieved by carefully choosing the

relevant (resource) allocation and pricing functionals based

on a three-step constructive design process. The design

process is illustrated with example formulations motivated by

network control problems and based on scalar-parameterised



logarithmic user utilities. It is shown that the resulting

mechanisms are indeed both efficient and truth-revealing

(strategy proof).

B. Contributions

The mechanism design approach introduced in this pa-

per is novel and constructive. The mechanisms obtained

differ from the well-known Vickrey-Clarke-Grove (VCG)

mechanisms. Furthermore, the constructive nature of the

design process allows derivation of a variety of mechanisms

for different problem formulations. Although the class of

mechanisms designed differ from VCG, they are still efficient

in the sense of maximising sum of player utility functions

and are strategy-proof, i.e. the corresponding strategic game

admits a dominant strategy equilibrium which reveals the

true user preferences. These properties can also be verified

independently by checking whether the specific mechanisms

obtained belong to the general class of Groves mechanisms,

of which VCG is another special case [17].

The rest of the paper is organised as follows. The next

section introduces the underlying model. Section III presents

the main results in the context of auction-based mechanisms.

The paper concludes with remarks of Section IV.

II. MODEL

Consider an auction mechanism where a designer D in-

fluences a finite set, A of users who have private preferences

and compete for limited resources through their bids. It is

possible to represent these preferences using utility functions,

and interpret them as user types. This paper focuses on

sharing of an additive limited resource.1 Each user receives

and pays for a 0 ≤ qi ≤ C share of the total resource C as

a result of an auction mechanism, such that
∑

i

qi ≤ C.

The designer tries to achieve a global objective such as

welfare maximisation by making the users reveal their true

utilities. For this purpose, the designer imposes certain rules

and prices to the users agreeing to participate in the mech-

anism. However, the designer cannot dictate user actions or

modify their private utility functions.

In order to formally analyze the considered auction mech-

anism, define an N -player strategic game, G, where each

user i ∈ A makes a bid

xi(qi) ∈ C2[0, C],

which is defined as a continuous, strictly concave, and twice-

differentiable function of the users share of the resource,

qi, on the interval [0, C]. The function xi represents the

declared preference, utility, or willingness-to-pay of user

i for the resource qi.

1Note that, the users are greedy enough such that the demand for the
resource is more than its availability. Otherwise, there would not be a
resource allocation problem since the designer would have allocated each
user simply its desired amount of resource without affecting other users.

The real utility of the ith user for the received resource

qi is captured by the utility function

Ui(qi) : R → R,

which is also assumed to be continuous, twice-differentiable,

and concave on the interval [0, C]. The focus here is on

direct and truth-revealing mechanisms, where in the ideal

case the users’ bids are their real utility functions.

The designer imposes a pricing signal on the bids of users,

which is formulated by adding it as a cost term to utility

resulting in a quasilinear setting. Hence, the user i has the

quasilinear cost functional

Ji(x) = ci(x)− Ui(Qi(x)), (1)

where ci and Qi are the pricing and allocation functionals

mapping C2[0, C] → R, respectively. Consequently, the user

solves the individual optimisation problem

min
xi

Ji(x). (2)

It is important to note that we assume here price antici-

pating users, who take into account the effect of their actions

on prices ci(x) and act accordingly. This is in contrast with

price taking users who ignore it at least partially, e.g. due to

lack of information.

The Nash equilibrium (NE) is a widely-accepted and use-

ful solution concept in strategic games, where no player has

an incentive to deviate from it while others play according

to their NE strategies. The NE x∗ of the game G is formally

defined as

x∗
i := argmin

xi

Ji(xi, x
∗
−i),

where x∗
−i = [x∗

1, . . . , x
∗
i−1, x

∗
i+1, . . . , x

∗
N ]. The NE is at the

same time the intersection point of players’ best responses

obtained by solving (2) individually.

A stronger concept is Dominant Strategy Equilibrium

(DSE), which is defined as

xD
i := argmin

xi

Ji(xi, x−i), ∀x−i ∀i,

i.e. the players choose the dominant strategy regardless of

the actions of others.

The designer objective, e.g. maximisation of aggregate

user utilities or social welfare, can be formulated using a

smooth objective function V (x, Ui(x)), where Ui(x), i =
1, . . . , N are user-specific pricing terms and user utilities,

respectively. Thus, the objective function V characterises the

desirability of an outcome x from the designers perspective.

Interestingly, the designer knows user bids x as well as the

mechanism (c and Q), however, has no access to true user

utilities U .

The following definitions describe various properties of a

mechanism and its corresponding game counterpart:

Definition II.1 (Efficiency). A mechanism is said to be effi-

cient if its outcome, i.e. the NE or DSE of the corresponding

strategic game, x∗, satisfies

x∗ = argmax
x

V (x, Ui(x)),



where V is the objective function of the designer.

Definition II.2 (Strategy-proof). A mechanism is said to be

strategy-proof, if and only if, the corresponding game admits

a DSE that reveals the true user types (preferences).

Definition II.3 (Revelation). In a strategy-proof mechanism,

each rational user acts according to own true utility or

reveals own true type regardless of the actions of others,

i.e. does not try to mislead the designer.

Note that these definitions are consistent with the proper-

ties of quasilinear mechanisms as discussed in [17].

III. MECHANISM DESIGN

In auction-based mechanisms, the designer uses an al-

location rule in addition to impose a cost on user actions.

Based on this rule, the designer explicitly allocates the users

their share of resources as a result of their bids. Specifically,

the designer D imposes on a user i ∈ A (possibly a user-

specific)

• resource allocation rule, Qi(x), s.t. qi = Qi(x),
• per-unit resource prices, Pi(x),

where x denotes the vector of user bids.

As presented in Section II, each user i aims to minimise

its own cost Ji(Qi(x), Pi(x)), as in (1), while the designer

tries to maximises a global objective V . The interaction

between the designer and users, depicted in Figure 1,

is through a single-step bidding/allocation process in the

auction-based mechanisms defined. Since the users cannot

obtain the resource q directly, they make a bid x for their

own share. Since this is a direct mechanism, these bids are

in the ideal case the actual utilities of users.

Designer

(Controller)
Players

Objective, Allocation

Prices

Bids,

Fig. 1. An auction-based mechanism, where the designer D imposes a
resource allocation rule as well as prices on users (players) A with the
purpose of satisfying a global objective V .

The main steps for designing an efficient and strategy-

proof auction mechanism are:

1) (efficiency) Define and solve user and designer optimi-

sation problems in terms of resources, q, i.e. identify
the equilibrium and globally optimal point.

2) (efficiency) Align the user and designer problems using

the Lagrange multiplier(s) of the limited resource, i.e.

move the equilibrium to the optimal point.

3) (strategy-proof) Devise the allocation rule (functional),

q, based on the problem alignment and then choose a

pricing functional that ensures a truth-revealing domi-

nant strategy equilibrium (DSE).

User Problem

The ith users individual cost functional Ji(x) in terms of

all user bids x is defined as

Ji(x) = ci(x)− Ui(Qi(x)).

Note that Ji is a functional, which we assume to be Frechet

differentiable at the points of interests. Before proceeding

further, it is appropriate to define the Frechet differential

and derivative for completeness. Let X = (C2[0, C])n be

the space of continuous, concave, and twice differentiable

n-vector functions on [0, C] and define the functional T :
X → R. If for fixed x ∈ X and each h ∈ X , there exists

δT (x;h), which is linear and continuous with respect to h
such that

lim
‖h‖→0

‖T (x+ h)− T (x)− δT (x;h)‖

‖h‖
= 0,

then δT (x;h) is said to be the Frechet differential of T at

x with increment h. Furthermore, δT (x;h) = T ′(x)h and

T ′(x) is called the Frechet derivative [13].

Taking the Frechet differential [13] of the user cost func-

tional with respect to own bid xi results in

δJi(xi, x−i;h) = δci(xi, x−i;h)−
∂Ui

∂Qi

δQi(xi, x−i;h).

Let Pi and Q′
i be the Frechet derivatives of ci and Qi,

respectively. Then, the Frechet differential can be written as

δJi(xi, x−i;h) = Pi(x)h−
∂Ui

∂Qi

Q′
ih. (3)

Given x−i, the best response of user i, x∗
i , consequently

satisfies

δJi(xi, x−i;xi − x∗
i ) ≥ 0 ∀xi ∈ C[0, C].

Assuming that the functional Ji is convex, then the local

solution to the user problem constitutes concurrently the

global (non-boundary) solution.

Designer Problem

The designer D aims to maximise the sum of utilities

of users. Clearly the case where the optimal solution is

obtained at
∑

i qi = C is of interest. Otherwise, users can

solve their own problems independently without a need for

a mechanism, i.e. the resource is abundant enough to satisfy

the needs of all users.

In the resource-limited case, the designer D solves the

constrained optimisation problem

max
q

V (q) ⇔ max
q

∑

i

Ui(qi) such that
∑

i

qi = C, (4)

in terms of the allocated resources q = Q(x).

The associated Lagrangian function is

L(q) =
∑

i

Ui(qi) + λ

(

C −
∑

i

qi

)

,

where λ > 0 is a scalar Lagrange multiplier. The derivatives



of the Lagrangian lead to

∂L

∂qi
= 0 ⇒ U ′

i(qi) = λ∗, ∀i ∈ A, (5)

and the efficiency constraint

∂L

∂λ
= 0 ⇒

∑

i

qi = C. (6)

Efficiency

Next, the designer problem is solved to obtain the alloca-

tion functional (rule) Q(x) such that the equilibrium point

overlaps with the optimal solution.

Solving the set of equations (5) and (6) from the designer

problem for q yields the allocation functional

Q(x, λ∗(x)) = Q(x),

where λ∗ is defined in (5). This allocation rule defined in

terms of user bids provides a Pareto-optimal solution, if the

user bids are made according their true utilities, Ui.

Strategy-proofness

Finally, the pricing functional Pi(x) is designed in such a

way that the Pareto solution coincides with the DSE of the

game and users are forced to reveal their true preferences.

Define the pricing functional as

Pi(xi, x−i) = xiQ
′
i(x),

where Q′
i is the Frechet derivative of Qi with respect to xi.

Then, substituting Pi in (3) leads to

δJi =

(

xi −
∂Ui

∂Qi

)

Q′
ih.

Taking a second Frechet derivative yields

δ2Ji = Q′
ih

2 −

(

∂2Ui

∂Q2
i

)

(Q′
ih)

2 +

(

xi −
∂Ui

∂Qi

)

Q
′′

i h
2.

If Q′
i ≥ 0, then the marginal utility of user i, x∗

i =
∂Ui/∂qi, is the optimal bid or action that minimises users

cost since δJi = 0 and δ2Ji > 0 regardless of the bids

of all other users, x−i. Therefore, x∗
i = ∂Ui/∂qi ∀i is

the DSE of the strategic game, which reveals the true user

utilities (preferences). Thus, the mechanism with the pricing

functional

Pi(xi, x−i) = xiQ
′
i(x),

and allocation functional

Qi(x) = x−1

i (λ∗), where
∑

i

x−1

i (λ∗) = C,

is strategy-proof.

Note that, the monotonicity condition imposed, Q′
i ≥

0, has a very reasonable interpretation. It means that the

allocation to the users will be non-decreasing in their bids,

i.e. the more a user bids, the more (or at least as much as

before) will be her or his allocation.

Example 1

Consider a game where the user utility functions are

symmetric except from a scalar parameter θ,

Ui(qi) = θi log(qi).

This family of user utilities are often used to model user

preferences in the networking literature, e.g. in flow or

congestion control problems. Hence, the optimal user bid

is the function

xi(qi) =
θ̂i
qi
.

From each bid, the designer learns the user parameters θ̂.

Solving designer problem leads to

Q∗
i =

θi
∑

i θi
C and λ∗ =

∑

i θi
C

.

Hence, the allocation functional simplifies to a function of θ̂
and is

Qi(θ̂) =
θ̂i
∑

i θ̂i
C.

Likewise, the pricing functional becomes a function of θ̂ and

is given by

Pi(θ̂) =

∑

j 6=i θ̂j
∑

i θ̂i
,

or alternatively

Pi = 1−
Qi

C
.

The user prices are then

ci(θ̂) = (
∑

j 6=i

θ̂j) log(
∑

i

θ̂i).

Thus, x∗
i = θi/qi, ∀i is the DSE of the corresponding

game, and hence, the mechanism is strategy-proof by Defini-

tion II.2. Furthermore, the mechanism belongs to the Groves

class.

Example 2

The analysis above is repeated for a slightly different

family of utility functions

Ui(qi) = θi log(qi + 1).

Here, it is assumed that θi is sufficiently large for each user

such that qi > 0 ∀i. Then, solving the designer problem

yields

q∗i =
θi
∑

i θi
(C +N)− 1 and λ∗ =

∑

i θi
C +N

=
θi

q∗i + 1
.

Again, the user bids reveal their utility parameter θ̂. Hence,
the allocation rule is defined as the function

Q∗
i (θ̂) =

θ̂i
∑

i θ̂i
(C +N)− 1.

The rest of the analysis is similar to that in Example 1



above, which results in the same pricing function as before

Pi(x) =

∑

j 6=i θ̂j
∑

i θ̂i
, Pi = 1−

Qi

C
.

Thus, the game admits a DSE and concurrently the mecha-

nism is strategy-proof.

Example 3

Another common user utility function is

Ui(q) = θi log(γi(q)),

where

γi(q) =
qi

∑

j 6=i qj + σ
(7)

denotes the signal-to-interference and noise ratio (SINR) and

σ > 0 is the noise variance. Such utility functions are

often encountered in transmission power control problems

in wireless networks [7], [9]. In this case, qi represents the

assigned (received or aimed) user power level and
∑

i qi ≤
C is the received sum power constraint for minimising

total interference in the overall system. The objective is to

maximise the aggregate utility of users in terms of SINR.

The resulting designer problem

max
q

∑

i

θi log(γi(q)) such that
∑

i

qi ≤ C, qi ≥ 0 ∀i

is non-convex but can be convexified using a nonlinear

(exponential) transform such that it admits a unique boundary

solution. Then, using the fact that
∑

i qi = C, the problem

can be written in terms of SINR

max
γ

∑

i

θi log(γi) such that
∑

i

γi
γi + 1

=
C

C + σ
.

Note that, the vector θ is now handled as an independent

variable.

The respective Lagrangian

L =
∑

i

θi log(γi) + λ

(

C

C + σ
−
∑

i

γi
γi + 1

)

leads to

λ =
(γi + 1)2

γi
θi ∀i and

∑

i

γi
γi + 1

=
C

C + σ
. (8)

The optimal user bids

xi =
dUi

dqi
=

θ̂i
qi

provide the declared preference parameters, θ̂, which can be

used to solve λ∗ and γ∗ in (8). Thus, the allocation function

Qi(θ̂, λ
∗(θ̂), γ∗(θ̂)) = Qi(θ̂)

is obtained, but can be computed only numerically. The

pricing function is then

Pi(θ̂) =
θ̂i
Qi

∂Qi

∂θ̂i
.

IV. CONCLUSIONS

A mechanism design approach is presented for deriving

a class of efficient and strategy-proof auction mechanisms,

where user preferences are captured by a class of smooth,

concave, and increasing utility functions. A three-step design

process is illustrated with multiple example user utilities that

are commonly used in the network control literature. The

mechanisms obtained as a result of this design process differ

from VCG, yet can be shown to belong to the general class

of Groves mechanisms in certain cases [17].

The results obtained extend the earlier ones with scalar-

parameterised user utilities, where the shape of the user util-

ity functions were assumed to be known by the mechanism

designer. Removing this assumption significantly improves

the applicability of this mechanism design framework to

problems in various fields such as communication networks,

energy management, and network security.

Future research directions include analysis of information

exchange between mechanism designer and users, as well as

extensions of the results to pricing (Pigovian) mechanisms

and multiple constraints.
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